• Title/Summary/Keyword: pile behavior

Search Result 719, Processing Time 0.023 seconds

Reinforcing Effect and Behaviors of Root-Pile in Heavy-Duty Direct Shear Test (대형직접전단시험에 의한 뿌리말뚝의 거동 및 보강효과)

  • Han, Jung-Geun;Jang, Sin-Nam
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.23-30
    • /
    • 2002
  • In recently, using of steel reinforcements by reinforcing materials of the reinforced earth, micro-pile and root-pile etc,. is wide-spreading in the stabilizing control of cutting and embankment slopes, but the failure mechanism of reinforced earth as well as the effect of insert angles or types of reinforcement and others are not defined clearly. In this study, therefore heavy-duty direct shear tests were exercised on the reinforced soil and the non-reinforced soil, which was executed for research on the interaction of soil-reinforcement and theirs behavior. The hardness and softness and the standard sands were used for modeling of reinforced soil, the material constants for the computer simulation were estimated from the results of CD-Test. The effects of reinforcing and of friction increasing on the softness, area ratio of reinforcements is equal, were the better than them of the hardness, as well the reinforcing effects of shear strength without regard to the area ratio is much the same at $10^{\circ}$, insert angle of reinforced bar, differ from them of the existing study. Then, the results of numerical analysis showed that the behavior of reinforcements displayed bending resistance and shear resistance at $15^{\circ}$ and $30^{\circ}$, respectively. Also, the state of strain transfer was observed and the behavior of resistance mechanism on reinforcements presented almost the same them of landslides stabilizing pile.

Behavior of Back Ground of the Laterally Loaded Single Pile (II) (수평하중이 작용하는 단독말뚝의 배면지반의 저항거동 특성(II))

  • Bae, Jong-Soon;Kim, Ji-Seong;Kim, Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.61-73
    • /
    • 2009
  • In this study, we grasped the resistance state of the back ground which had a notable influence on computing the lateral resistance of the laterally loaded single pile in the homogeneous ground by the model test. In order to grasp a resistance behavior, we have to know the deformation area of the back ground and the side failure angle other than the rotation point of pile and vertical failure angle of back ground which were proposed by Bae & Kim in 2008. We found out in this test the characteristics of the behavior of the back ground in accordance with the shape and size of the pile and ground density. We examined the interrelationship of the relative density of sand, the size and the sectional shape of the pile as well.

Analysis of Optimized Column-pile Length Ratio for Supplementing Virtual Fixed Point Design of Bent Pile Structures (단일 현장타설말뚝의 가상고정점 설계를 보완한 상부기둥-하부말뚝 최적 길이비 분석)

  • Jeong, Sangseom;Kim, Jaeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1915-1933
    • /
    • 2013
  • In this study, the virtual fixed point analysis and 3D fully modeling analysis for bent pile structures are conducted by considering various influencing factors and the applicability of the virtual fixed point theory is discussed. Also, the optimized column-pile length ratio is analyzed for supplementing virtual fixed point design and examining a more exact behavior of bent pile structures by taking into account the major influencing parameters such as pile length, column and pile diameter, reinforcement ratio and soil conditions. To obtain the detailed information, the settlement and lateral deflection of the virtual fixed point theory are smaller than those of 3D fully modeling analysis. On the other hand, the virtual fixed point analysis overestimates the axial force and bending moment compared with 3D fully modeling analysis. It is shown that the virtual fixed point analysis cannot adequately predict the real behavior of bent pile structures. Therefore, it is necessary that 3D fully modeling analysis is considered for the exact design of bent pile structures. In this study, the emphasis is on quantifying an improved design method (optimized column-pile length ratio) of bent pile structures developed by considering the relation between the column-pile length ratio and allowable lateral deflection criteria. It can be effectively used to perform a more economical and improved design of bent pile structures.

Lateral Behavior of Group Pile in Sand (사질토 지반에서 군말뚝의 수평거동에 관한 연구)

  • 김영수;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.117-129
    • /
    • 2000
  • This paper discusses the lateral behavior of group pile in homogeneous and non- homogeneous (two layered) soil. In the group pile, the model tests were to investigate the effects on spacing-to-diameter ratio of pile, pile array, ratio of pile spacing, constraint condition of pile tip, eccentric load and ground condition. The group efficiency and lateral deflection induced in active piles were found to be highly dependent on the spacing-to-diameter ratio of pile, number of pile. Lateral bearing capacities in the group piles of fixed tip, in the case of 6D spacing and $3\times3$ array, were 40-100% higher than those in the group pile of free tip. Based on the results obtained, a spacing-to-diameter of 6.0 seems to be large enough to eliminate the group effect for the case of relative density of 61.8% and 32.8%, and then each pile in such a case behaves essentially the same as a single pile. However, in the case of dense sand, it can be estimated that a spacing-to-diameter of 8.0 seems to be large enough to eliminate the group effect. In this study the group efficiency is illustrated in experimental function with spacing-to-diameter, S/D, relative density and number of pile. The distribution of shear force in lead row piles, in the case of 3$\times$3 array group pile, was 41.6-52.4% for 3D spacing and 34-40% for 6D spacing, respectively. The shadowing effect for the parallel direction of lateral loading appears to be more significant than the one for the perpendicular direction of lateral loading.

  • PDF

Dynamic Analysis of Inclined Piles and Countermeasures against their Vulnerability (경사말뚝의 동적거동과 내진성능 향상을 위한 실험적 고찰)

  • 김재홍;황재익;김성렬;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.107-114
    • /
    • 2001
  • When group pile supporting structures are to be subjected to large lateral loads, generally, hatter piles are used in group pile with vertical piles. It is well known that batter piles resist lateral static loads which are acted upon the piles as axial farces quite well but, they show a poor performance under seismic loads. However, it is not yet known how the batter piles behave under dynamic loading and how to strengthen the batter piles to improve the seismic performance. Shaking table tests were performed to investigate the seismic behavior of the batter pile and to bring up the countermeasures to improve the seismic performance. As the result of the shaking table tests, batter piles failed due to not only the excessive increase of compressive force near the pile head but also that of tensile force. In case that the pile head was connected with pile cap by rubber joint, the max. acceleration at the pile cap was reduced due to the high damping ratio of rubber and the max. moment and max. axial farce at the pile head was decreased remarkably. When the inclinations(V:H) of the batter pile were 8:3 and 8:4, max. moment, max. shear force, and max. axial farce were reduced notably and max. acceleration and max. displacement at the pile cap was diminished, too.

  • PDF

Influence of Pile Cap's Boundary Conditions in Piled Pier Structures (교량 말뚝기초의 단부 지점조건의 영향분석)

  • Won Jin-Oh;Jeong Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.15-24
    • /
    • 2005
  • Modeling techniques of piled pier were reviewed and the influences of pile cap's boundary conditions were analyzed in this study. The method using flexible springs seems to be useful fur the practical design since its simplified model can represent the complex behaviors of pile groups efficiently. Parameter studies were performed far various pile group arrangements, pile spacings, end bearing conditions, and loading stages to analyze their effects on the lateral displacements, maximum pile bending stresses, and lateral stiffness of pile groups. Through the parameter studies, it was found that when lateral stiffness of pile groups was estimated by using three-dimensional analysis method (YSGroup), its complex behavior could be predicted better than other methods based on single pile analysis.

Nonlinear responses of energy storage pile foundations with fiber reinforced concrete

  • Tulebekova, Saule;Zhang, Dichuan;Lee, Deuckhang;Kim, Jong R.;Barissov, Temirlan;Tsoy, Viktoriya
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.363-375
    • /
    • 2019
  • A renewable energy storage pile foundation system is being developed through a multi-disciplinary research project. This system intends to use reinforced concrete pile foundations configured with hollowed sections to store renewable energy generated from solar panels attached to building structures in the form of compressed air. However previous research indicates that the compressed air will generate considerable high circumferential tensile stresses in the concrete pile, which requires unrealistic high hoop reinforcement ratio to avoid leakage of the compressed air. One possible solution is to utilize fiber reinforced concrete instead of placing the hoop reinforcement to resist the tensile stress. This paper investigates nonlinear structural responses and post-cracking behavior of the fiber reinforced concrete pile subjected to high air pressure through nonlinear finite element simulations. Concrete damage plasticity models were used in the simulation. Several parameters were considered in the study including concrete grade, fiber content, and thickness of the pile section. The air pressures which the pile can resist at different crack depths along the pile section were identified. Design recommendations were provided for the energy storage pile foundation using the fiber reinforced concrete.

Effects of Soil Conditions on the Behavior of Open -Ended Steel Pipe Pile (지반조건의 변화가 개단강관말뚝의 거동에 미치는 영향)

  • Baek, Gyu-Ho;Lee, Jong-Seop;Lee, Seung-Rae
    • Geotechnical Engineering
    • /
    • v.9 no.3
    • /
    • pp.23-34
    • /
    • 1993
  • Model pile teats, using large calibration chamber in which the stress state and the relative density can be controlled, were performed in order to study on the effect of soil condition on the behavior of open-ended steel pipe pile. The model pipe pile was made up of two pipes to separately measure each component of bearing capacity of open -ended steel pipe pile. According to the tests results, pile plugging and driving resistance of the pile installed in sand were primarily dependent on the horizontal stress and the relative density. Plug bearing capacity, outside skin fricition and total bearing capacity were also mainly dependent on the horizontal stress and relative density. Moreover, the ratio of the horizontal stress acting on the outside wall of open -ended pipe pile after installation to the original horizontal stress was not nearly affected by original value of horizontal stress. It is bigger than one in the case of dense deposit, equal to one for medium deposit, and smaller than one for very loose deposit. It seems to be mainly dependent on the relative density for a given soil.

  • PDF

Evaluation of Seismic Performance of Takahama Wharf Using Nonlinear Effective Stress Analysis (비선형 유효응력해석을 이용한 Takahama 잔교식 안벽의 내진성능 평가)

  • Tran, Nghiem Xuan;Lee, Jin-sun;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.4
    • /
    • pp.47-56
    • /
    • 2017
  • Aseismic designs of pile-supported wharves are commonly performed utilizing simplified dynamic analyses, such as multi-mode spectral analyses. Simplified analyses can be useful for evaluating the limit state of structures. However, several pile-supported wharves, that have been damaged during past earthquakes, have shown that soil deformation and soil-pile dynamic interaction significantly affect the entire behavior of structures. Such behavior can be captured by performing nonlinear effective stress analyses, which can properly consider the dynamic interactions among the soil-pile-structure. The present study attempts to investigate the earthquake performance of a pile-supported wharf utilizing a three-dimensional numerical method. The damaged pile-supported wharf at the Kobe Port during the Hyogo-ken Nambu earthquake (1995) is selected to verify the applicability of the numerical modeling. Analysis results showed a suitable agreement with the observations on the damaged wharf, and the significant effect of excess pore pressure development and pile-soil dynamic interaction on the seismic performance of the wharf.

Pile-soil-structure interaction effect on structural response of piled jacket-supported offshore platform through in-place analysis

  • Raheem, Shehata E Abdel;Aal, Elsayed M. Abdel;AbdelShafy, Aly G.A.;Fahmy, Mohamed F.M.;Mansour, Mahmoud H
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.407-421
    • /
    • 2020
  • In-place analysis for offshore platforms is essentially required to make proper design for new structures and true assessment for existing structures, in addition to the structural integrity of platforms components under the maximum and minimum operating loads when subjected to the environmental conditions. In-place analysis have been executed to check that the structural member with all appurtenance's robustness have the capability to support the applied loads in either storm or operating conditions. A nonlinear finite element analysis is adopted for the platform structure above the seabed and pile-soil interaction to estimate the in-place behavior of a typical fixed offshore platform. The SACS software is utilized to calculate the dynamic characteristics of the platform model and the response of platform joints then the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have significant effects in the results of the in-place analysis behavior. The most of bending moment responses of the piles are in the first fourth of pile penetration depth from pile head level. The axial deformations of piles in all load combinations cases of all piles are inversely proportional with penetration depth. The largest values of axial soil reaction are shown at the pile tips levels (the maximum penetration level). The most of lateral soil reactions resultant are in the first third of pile penetration depth from pile head level and approximately vanished after that penetration. The influence of the soil-structure interaction on the response of the jacket foundation predicts that the flexible foundation model is necessary to estimate the force responses demands of the offshore platform with a piled jacket-support structure well.