• Title/Summary/Keyword: pigment plant

Search Result 155, Processing Time 0.028 seconds

Morphological and genetic differences among white-, red- and blue colored root lines in Codonopsis lanceolata (백더덕, 홍더덕, 청더덕의 외부형태적 특성 및 유전적 차이 분석)

  • Kim, Ji-Ah;Bae, Kee-Hwa;Kwon, Hye-Kyoung;Yi, Jae-Seon;Choi, Yong-Eui
    • Journal of Plant Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.124-129
    • /
    • 2009
  • In general, the root color of Codonopsis lanceolata is white, but red or blue-colored root is found at a low frequency in nature. Red or blue-colored roots have scarcity value, thus farmers wish to produce colored roots. The factors for determining the color of roots are unclear whether the color is controlled by genetically or simply by environmentally such as soil environment. Using in vitro culture system which is advantageous for setting of the same culture condition, we analyzed the physiological and morphological characteristics and genetic differences among red-, blue- and white lines of C. lanceolata. In the red colored roots, stems of in vitro cultured plantlet were colored in dark red pigment. Histological analysis revealed that the red pigment was accumulated in the outer cortex layer of the stem and determined as anthocyanin. Chlorophyll contents in red root lines were higher than those in white- and blue root lines. Plantlets from red roots were smaller in both shoot length and total leaf area than those from white- and blue roots. Genetic differences among the three different colored C. lanceolata were determined by RAPD (Randomly Amplified Polymorphic DNA) analysis. Each line of colored roots had clear DNA polymorphism. These results indicate that the occurrence of red- and blue colored roots in nature was determined by genetic factors rather than soil enviromental conditions.

Effect of Salicylic Acid on Anthocyanin Synthesis in Cell Suspension Cultures of vitis vinifera L. (포도의 현탁세포배양에서 안토시아닌 생합성에 미치는 Salicylic Acid의 영향)

  • 신동호;유상렬;최관삼
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.2
    • /
    • pp.59-64
    • /
    • 1995
  • Effects of salicylic acid (SA) on anthocyanin synthesis in cell suspension cultures of grapes (Vitis vinifera L.) were investigated. tow concentrations (0.1 to 1$\mu$M) of SA did not affect the cell growth and anthocyanin accumulation whereas high concentrations (5 to 10$\mu$M ) of SA inhibited cell growth with increasement of anthocyanin synthesis. Five micromoles of SA promoted anthocyanin accumulation 4 folds compared to control cells. When SA was treated on the different culture times (0 to 7day), the highest pigment accumulation was obtained at the cells of second day. A low productivity of anthocyanin under continuous dark incubation was also recovered by adding SA which mimicked light irradiation effect These results suggest that SA is one of essential agents in anthocyanin biosynthesis.

  • PDF

A Bioassay for Chemicals Affecting Plant Pigment Biosynthesis: Greening Assay (식물색소 관여형 화합물의 생물검정법으로서 Greening Assay)

  • Kim, J.S.;Kim, T.J.;Hong, K.S.;Hwang, I.T.;Cho, K.Y.
    • Korean Journal of Weed Science
    • /
    • v.10 no.3
    • /
    • pp.214-220
    • /
    • 1990
  • To establish a greening assay for screening, and physiological and biochemical studies of the compounds affecting biosynthesis of plant pigments, were conducted on environmental factors, and on ways of incubation and illumination which affect plant greening. Greening was good when both cucumber and barley were grown for 5 to 6 days at $25^{\circ}C$ in darkness, when adaxial sides of cucumber cotyledons were contacted with the solution, and when barley leaf fragments were taken 0.5 to 2.0cm from the leaf tip. Potassium phosphate buffer(pH 6.0) at 10mM was most desirable for plant greening. The speed of greening during illumination was increased as the temperature increased from $15^{\circ}C$ to $35^{\circ}C$. The responses were sensitive more in cucumber than in barley, and in chlorophyll biosynthesis than in carotenoid biosythesis. The content of chlorophyll was greatest at the light intensity of 5000 and 1000 lux for cucumber and barley, respectively, but the biosynthesis of carotenoids were greatest at the light intensity higher than for chlorophyll. In use of solvents for dissolving chemicals, acetone, ethyl alcohol and DMSO at 10, 0.1 and 2.5% or less, respectively, did not affect the biosynthesis of plant pigments. $pI_{50}$ values were calculated for chemicals affecting pigment biosynthesis.

  • PDF

Potato Common Scab by Streptomyces turgidiscabies (Streptomyces turgidiscabies에 의한 감자 더뎅이병)

  • 김전순;박덕환;임춘근;최용철;함영일;조원대
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.551-554
    • /
    • 1998
  • Bacterial specs isolated from common scab lesion on potato (Solanum tuberosum L. c.. Dejima) tuber was identified as Streptomyces turgidiscabies. This organism had flexuous spore chains and grey spore mass color, produced melanin pigment on ISP 7, but did not produce on ISP 6. S. turgidiscabies grew on agar media at pH 4.5, used L-arabinose, D-fructose, D-glucose, D-mannitol, raffinose, rhamnose, sucrose, D-xylose and meso-inositol as carbon sources, and was susceptible to 7% NaCl, thallium acetate (10 $\mu\textrm{g}$/ml, 100$\mu\textrm{g}$/ml), crystal violet (0.5 $\mu\textrm{g}$/ml), phenol (0.1%, wt/vol), oleandomycin (100 $\mu\textrm{g}$/ml), and streptomycin (20 $\mu\textrm{g}$/ml).

  • PDF

Potato Scab Caused by Streptomyces acidiscabies (Streptomyces acidiscabies에 의한 감자 더뎅이병)

  • 김점순;박덕환;최용철;임춘근;홍순영;이승돈;함영일;조원대
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.689-692
    • /
    • 1998
  • Bacterial species isolated from common scab lesion on potato (Solanum tuberosum L. cv. Dejima) was identified as Streptomyces acidiscabies. This organism had flexuous spore chains and white spore mass color, produced melanin pigment on tyrosine agar medium but did not produce on peptone agar medium. S. acidiscabies grew on agar medium at pH 4.0, used L-arabinose, D-fructose, D-glucose, D-mannitol, rhamnose, sucrose, D-xylose and meso-inositol except reffinose as carbon sources. It was also susceptible to thallium acetate (10 $\mu\textrm{g}$/ml, 100$\mu\textrm{g}$/ml), phenol (0.1%, wt/vol), streptomycin (20 $\mu\textrm{g}$/ml), and was resistant to 7% NaCl, crystal violet (0.5 $\mu\textrm{g}$/ml), penicillin (10 IU/ml) and oleandomycin (25 $\mu\textrm{g}$/ml, 100 $\mu\textrm{g}$/ml).

  • PDF

Tissue Specific Gene Regulation of The Anthocyanin Synthesis Regulator Gene R in Maize (옥수수의 색소 발현에 관련된 조직 특이성 조절유전자 R locus에 관하여)

  • 임용표
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.323-347
    • /
    • 1987
  • The R locus of maize in one of several genes that regulate the anthocyanin pigments throughout the body of the plant and seed. The R gene product may regulate pigment deposition by controlling the expression of the flavonoid biosynthetic gene pathway in a tissue-specific manner. To understand the basis for tissue specific regulation and allelic variation at R, the molecular study has been done by cloning a portion of the R complex by transposon tagging with Ac. R specific probe were cloned from the R-nj mutant induced by Ac insertion mutagenesis. From southern analysis of R-r complex using the R-nj probe, the structure of R-r was proposed that R-r containes the three elements, (P)(Q)(S). These elements may organize as the inversion triplication model which (S) sequence was inverted in relation to (P) and (Q). The R-sc derivated from R-mb or R-nj was cloned with R-nj probe, and molecular genetical data showed that R-sc containes tissue specific and tissue nonspecific area, and the sequencing of R-sc are progressed now.

  • PDF

Effect of Treatment with Selected Plant Extracts on the Physiological and Biochemical Parameters of Rice Plants under Salt Stress

  • Hyun-Hwa Park;Pyae Pyae Win;Yong-In Kuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • High soil salinity is the most severe threat to global rice production as it causes a significant decline in rice yield. Here, we investigated the effects of various plant extracts on rice plant stress associated with high salinity. Additionally, we examined various physiological and biochemical parameters such as growth, photosynthetic activity, chlorophyll content, and lipid peroxidation - in rice plants after treatment with selected plant extracts under salt stress conditions. Of the 11 extracts tested, four - soybean leaf, soybean stem, moringa (Moringa oleifera), and Undaria pinnatifida extracts - were found to effectively reduce salt stress. A reduction of only 3-23% in shoot fresh weight was observed in rice plants under salt stress that were treated with these extracts, compared to the 43% reduction observed in plants that were exposed to stress but not given plant extract treatments (control plants). The effectiveness varied with the concentration of the plant extracts. Water content was higher in rice plants treated with the extracts than in the control plants after 6 d of salt stress, but not after 4 d of salt stress. Although photosynthetic efficiency (Fv/Fm), electron transport rate (ETR), and the content of pigments (chlorophyll and carotenoid) varied based on the types and levels of stress and the extracts that the rice plants were treated with, generally, photosynthetic efficiency and pigment content were higher in the treated rice compared to control plants. Reactive oxygen species (ROS), such as superoxide radicals, hydrogen peroxide (H2O2), and malondialdehyde (MDA), increased as the duration of stress increased. ROS and MDA levels were lower in the treated rice than in the control plants. Proline and soluble sugar accumulation also increased with the duration of the stress period. However, proline and soluble sugar accumulation were lower in the treated rice than in the control plants. Generally, the values of all the parameters investigated in this study were similar, regardless of the plant extract used to treat the rice plants. Thus, the extracts found to be effective can be used to alleviate the adverse effects of stress on rice crops associated with high-salinity soils.

Biological Characterization of the Chemical Structures of Naturally Occurring Substances with Cytotoxicity

  • Park, Hee-Juhn;Jung, Hyun-Ju;Lee, Kyung-Tae;Choi, Jong-Won
    • Natural Product Sciences
    • /
    • v.12 no.4
    • /
    • pp.175-192
    • /
    • 2006
  • Screening for the cytotoxicity from plant origin is the first stage for anti-cancer drug development. A variety of terpenoids with exomethylene, epoxide, allyl, $\alpha,\beta-unsaturated$ carbonyl, acetylenes, and $\alpha-methylene-\gamma-lactone$ induces apoptosis and/or differentiation as well as cytotoxicity through the ROS signal transduction pathways. These are found among monoterpenes, sesquiterpenes, triterpenes, flavonoids, coumarins, diarylheptanoids, and even organosulfuric compounds. The most essential characteristics of natural cytotoxic substances is to possess the strong electrophilicity that is susceptible to nucleophilic biomolecules in the cell. Thiol-reductants and superoxide dismutase can block or delay apoptosis. Thus, ROS and the resulting cellular redox-potential changes can be parts of the signal transduction pathway during apoptosis. Disturbance of the balance of oxireduction by the pigment of natural quinones also caused the induction of the differentiation and apoptosis. Saponins with the cytotoxicity are restricted to their monodesmosides, rather than to bisdesmosides. Those saponins exhibited calcium ion-mediated apoptosis in addition to cytotoxicity whereas they showed also differentiation without extracellular calcium ion. The properties on cytotoxicity, apoptosis, and differentiation were assumed to depend on resultant oxidative stress to the cells. In this review, we describe a spectrum of cytotoxic compounds with various action mechanisms.

Growth and Physiological Responses of Quercus acutissima Seedling under Drought Stress

  • Lim, Hyemin;Kang, Jun Won;Lee, Solji;Lee, Hyunseok;Lee, Wi Young
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.363-370
    • /
    • 2017
  • In this study, Quercus acutissima seedlings were subjected to drought for 30 days then analyzed to determine their response to water deficit. The growth phenotype, chlorophyll fluorescence response, fresh weight, dry weight, photosynthetic pigment levels, soluble sugar content, and malondialdehyde (MDA) were measured to evaluate the effects of drought on plant growth and physiology. The growth phenotype was observed by infrared (IR) digital thermal imaging after 30 days of drought treatment. The maximum, average, and minimum temperatures of drought-treated plant leaves were $1-2^{\circ}C$ higher than those of the control. In contrast, the fresh and dry weights of the dehydrated leaves were generally lower than those of the control. There were no significant differences between treatments in terms of chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid levels. Nevertheless, for the drought treatment, the $F_v/F_m$ and $F_v/F_o$ ratios (chlorophyll fluorescence response) were lower than those for the control. Therefore, photosynthetic activity was lower in the dehydrated plants than the control. The drought-stressed Q. acutissima S0536 had lower soluble sugar (glucose and fructose) and higher MDA levels than the controls. These findings may explain the early growth and physiological responses of Q. acutissima to dehydration and facilitate the selection of drought-resistant tree families.

Lack of Mutagenecity of Green Pigments in Salmonella typhimurium (녹변화합물의 Salmonella typhimurium에 대한 돌연변이성 측정)

  • Kim, Han-Byul;Park, Han-Ul;Lee, Ju-Young;Kwon, Hoon-Jeong
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.242-247
    • /
    • 2011
  • A greening phenomenon has been observed in some plant foods such as chestnut, sweet potato, burdock, and others during processing. The formation of the pigments was postulated as reactions of primary amino compounds with chi orogenic acid or caffeic acid ester, yielding acridine derivatives. Acridine derivatives have been regarded as mutagenetic agents. For the reason, the bacterial reverse mutation test was carried out to evaluate the genotoxicity of green pigment using Salmonella typhimurium TA98 and TA100. Alanine, arginine, aspartic acid, glycine, lysine, and phenylalanine were reacted repectively with chlorogenic acid to synthesize model compound. Green pigment was extracted from sweet potato. Maximum concentration of 2 and 50 mg/plate was tested for the synthetic green pigments and extracted green pigment respectively, taking bacterial survival, solubility, and color intensity into consideration. There was no signigicant increase in the reverse mutation either with or without S9 activation system by any test material. Though further studies with other genotoxicity test system are necessary, both synthetic and sweet potato green pigments seemed not to cause mutation despite the acridine moiety in their structures.