• Title/Summary/Keyword: pig small intestine

Search Result 57, Processing Time 0.026 seconds

Development of effective heparin extraction method from pig by-products and analysis of their bioavailability

  • Lee, Da Young;Lee, Seung Yun;Kang, Hea Jin;Park, Yeonhwa;Hur, Sun Jin
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.933-947
    • /
    • 2020
  • This study was conducted to develop an effective heparin extraction method by using low-cost and highly effective enzymes from six pig by-products (liver, lung, heart, stomach, small intestine, and large intestine), and analyze their bioavailability. Low-cost and highly effective enzymes (alkaline-AK and papain) and a common enzyme (trypsin) were used for the heparin extraction. The angiotensin I- converting enzyme (ACE) inhibitory activity and the antimicrobial activity of extracted heparin were analyzed to verify their bioavailability. The average amount of heparin extracted per kilogram of pig by-products was 439 mg from the liver, 127 mg from the lung, 398 mg from the heart, 261 mg from the stomach, 197 mg from the small intestine, and 239 mg from the large intestine. Various enzymes were used to extract heparin, and the amount of extracted heparin was similar. Based on 1 g of pig by-product, the enzymes trypsin, papain, and alkaline-AK could extract 1,718 mg, 1,697 mg, and 1,905 mg of heparin, respectively. Heparin extracted from pig by-products showed antihypertensive activity and antimicrobial activity against Staphylococcus aureus at low populations. These results indicated that heparin can be obtained from pig by-products at a low cost.

Distribution Channel and Microbial Characteristics of Pig By-products in Korea

  • Kang, Geunho;Seong, Pil-Nam;Moon, Sungsil;Cho, Soohyun;Ham, Hyoung-Joo;Park, Kyoungmi;Kang, Sun-Moon;Park, Beom-Young
    • Food Science of Animal Resources
    • /
    • v.34 no.6
    • /
    • pp.792-798
    • /
    • 2014
  • The distribution channel of meat by-products from the pig farm to the final consumer can include a meat processor, wholesale market, wholesaler, retailer, and butcher shop. Bacterial contamination at any of these steps remains to be a serious public health concern. The aim of this study was to evaluate the distribution channel and microbial characteristics of pig by-products in Korea. Upon evaluation of pig by-products in cold storage, we found that the small and large intestine were significantly (p<0.05) higher in pH value compared to the heart and liver. The total plate counts were not significantly different among offals until cold storage for 7 d. The coliform count after 1 d of cold storage was significantly (p<0.05) higher in small and large intestine than in the other organs. The coliform count of heart, liver, and stomach showed a higher coliform count than small and large intestine until 7 d of cold storage. As determined by 16S rRNA sequencing, contamination of major pig by-products with Escherichia coli, Shigella spp., and other bacterial species occurred. Therefore, our results suggest that a more careful washing process is needed to maintain quality and hygiene and to ensure the safety of pig by-products, especially for small and large intestine.

Changes in Total Plate Counts and Quality of Pig Small Intestine by Different Washing and Packaging Methods

  • Kang, Geunho;Seong, Pil-Nam;Ba, Hoa Van;Moon, Sungsil;Cho, Soohyun;Park, Beom-Young;Kang, Sun-Moon;Ham, Hyoung-Joo;Kim, Dayae;Park, Kyoungmi
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1253-1260
    • /
    • 2018
  • Pig small intestine not only is used as food but also for sausage casings production in many countries worldwide. However, it is well recognized that the small intestine is important source of spoilage and pathogenic bacteria. The present study aimed at investigating the effects of different washing and packaging methods on the changes of microbial levels and physicochemical characteristics of pig small intestine. After collecting and trimming off of visible fats, the pig small intestine samples were treated with; (i) different packaging methods: aerobic packaging (AP), skin packaging (SP), and vacuum packaging (VP); and (ii) washing with different concentrations of acetic acid. The treated samples were then stored at $4^{\circ}C$ for 1, 4, 7, and 10 d. At 1-d storage, higher pH value was found in the AP-treated samples, however, after 7 to 10 days the samples treated with SP had higher values compared to the ones treated with AP and VP (p<0.05). Thiobarbituric acid reactive substances values were higher in the AP-treated samples than those of the SP- and VP- treated samples at 7-d storage (p<0.05). At $10^{th}$ d, total plate counts (TPC) were higher in the control than in the acetic acid-washed samples (p<0.05). Additionally, the TPC was lower in the SP- and VP-treated samples than the AP-treated samples at 7-d storage (p<0.05). These obtained results suggest that the applications of washing with acetic acid solution and/or SP and VP methods could be an effective way to extend the shelf-life of pig small intestine during cold distribution.

Comparison of the Measured Electrical Properties of Pig Internal Organs with the Given Values for Human Organs

  • Jung, Ji-Hyun;Kim, Se-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.2
    • /
    • pp.161-165
    • /
    • 2012
  • The electrical properties of pig internal organs including lung, liver, heart, kidney, blood, stomach, and small intestine are measured using an open-ended coaxial probe and an improved virtual transmission-line model. The measured complex permittivities of the pig organs are compared with the given values of the corresponding human organs. A similarity between these values is confirmed. For organs such as lung, liver, heart, and kidney that have regular texture and contents, the complex permittivities are almost identical to those of the corresponding human organs. The complex permittivities of human and pig blood are also very close in value. However, relatively large deviations are observed for the cases of stomach and small intestine because the internal contents of these organs significantly affect the measured electrical properties.

Fundamental Biotribological Characteristics between Biomaterials and Small Intestine (생체내 미소의료기기에 대한 Biotribology 기초연구)

  • 김영태;권은영;정효일;김대은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1361-1364
    • /
    • 2004
  • There is a need for fundamental understanding of biotribological characteristics of various biomaterials sliding against biological materials in order to develop a moving mechanism of medical microsystems having high energy efficiency. A special experimental equipment was designed and built to study the frictional behavior of various biomaterials sliding against a small intestine specimen of a pig. Friction experiments for six biomaterials were performed. Particularly, the effects of load and speed on frictional behavior were investigated. The results of this work will aid in the development of the actuator for a self-propelling micro-endoscope.

  • PDF

Effects of Dietary Glutamine and Glutamate Supplementation on Small Intestinal Structure, Active Absorption and DNA, RNA Concentrations in Skeletal Muscle Tissue of Weaned Piglets during d 28 to 42 of Age

  • Liu, Tao;Peng, Jian;Xiong, Yuanzhu;Zhou, Shiqi;Cheng, Xuehui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.238-242
    • /
    • 2002
  • Seventy-four piglets were used to investigate the effects of dietary glutamine (Gln) and glutamate (Glu) on the mucosal structure and active absorption of small intestinal, DNA and RNA concentrations of skeletal muscle tissue in piglets during d 28 to 42 of age. Postweaning piglets were fed for 14 d corn- and soybean meal-based diets supplemented with 0.0 or 1.0% L-Gln or L-Glu. On d 7 and 14 postweaning, pigs' small intestinal sections and longissimus dorsi were collected, at the same time, the D-xylose absorption test was conducted. The results suggested that in comparison to control piglets, jejunal atrophy during the first week postweaning was prevented by the glutamine and glutamate supplementation (1%) and the capability of small intestine to absorb Dxylose was improved. Furthermore the RNA concentration in skeletal muscle tissue was increased. These results provide an experimental basis for use of glutamine and glutamate on alleviating the weaning stresses and improving piglets' growth performance.

Physiology of Small and Large Intestine of Swine - Review -

  • Mosenthin, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.608-619
    • /
    • 1998
  • The small and the large intestine of swine represent the organs that extract nutrients from feedstuffs through digestion and fermentation and that allow their absorption and incorporation into the blood circulation. Special attention is directed towards the small intestine of young pigs since the transition to a solid diet at weaning exerts major impacts on the structural and functional integrity of the small intestine. Dietary factors involved in postweaning changes of gut morphology and biochemistry such as removal of bioactive compounds in sows milk at weaning, anti-nutritional factors in weaner diets, dietary fiber and the role of voluntary feed intake will be elucidated. The microbial function of the large intestine which is carried out by a diverse population of microorganisms is dependent on substrate availability. Short chain fatty acids as main fermentation products contribute to the energy supply of the host but they are also important for the maintenance of the morphological and functional integrity of the epithelium in the colon. As a result of bacterial nitrogen assimilation in the large intestine, nitrogen is shifted from the urinary to the fecal excretion route thus saving metabolic energy to the pig because less ammonia would become available for conversion to urea.

Comparison of the Chicken Large Intestine to the Large Intestine of Pigs and the Rumen of Cows (닭의 대장을 돼지의 대장이나 소의 제 1위 (Rumen)와 비교 연구)

  • Nahm K.H.
    • Korean Journal of Poultry Science
    • /
    • v.33 no.1
    • /
    • pp.81-95
    • /
    • 2006
  • The large intestine of the chicken differs both anatomically and physiologically from the pig's large intestine and the men of the cow. The chicken's large intestine is less developed than the pig's large intestine or the cow's lumen. This paper summaries these differences. The chicken's large intestine contains a microbiological population similar to that found in the rumen. The chicken's caeca especially contains a large number of microorganisms, but this population varies according to age, fred, maturity, antibiotic use and etc.. Protein is an essential nutrient for the formation of intestinal microvilli. A study showed that the length of the small intestine was 63 % of the total gastrointestinal tract (GIT) length, while caecum was 8.1 %, and the colon and rectum were 4.6 %. The establishment of the microbial population of the small intestine occurs earlier than that of the caeca, but the identity of approximately 90 % of microbial population of the chicken GIT is hon. Recent studies have shown that energy, volatile fatty acid (VFA) and electrolytes that are found in the large intestine may be absorbed to a certain degree. The chicken small intestine is the primary location for digestion with a variety of enzymes being secreted here. Much research is being conducted into the digestion of sucrose thermal oligosaccharide caramel (STOP), fructooligosaccharides (FOS), mannanoligosaccharide (MOS), galactooligosaccharides (GOS) and isomalto-oligosaccharides (IMO) in the chicken caeca and large intestine. Excessive fibre content in the feed has detrimental effects, but proper fibre supplementation to chicken diets can improve the length and capacity of the small intestine.

Tribological Characteristics of Endoscope Capsule Inside of Small Intestine (캡슐형 내시경 개발을 위한 소장 내에서의 캡슐저항력 특성)

  • 백남국;김대은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.142-145
    • /
    • 2002
  • In order to develop a self-propelled microendoscope, the frictional resistance of the capsule-type endoscope inside the intestine should be understood. In this work the frictional resistance behaviors of capsules with different designs were experimentally investigated using a pig intestine. It was found that cylindrical capsule design had the least frictional resistance. Also, the resistance increased as the speed of the capsule motion was decreased. It is expected that the results of this work will be used to design the optimum propulsion system for the microendoscope.

  • PDF

In silico Discovery of Genes Expressed in Liver, Kidney, Spleen and Small Intestine of Pigs

  • Pan, Zengxiang;Liu, Honglin;Chen, Jie;Xu, Dan;Jiang, Zhihua;Xie, Zhuang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.170-178
    • /
    • 2005
  • An in silico approach was developed to survey the genes expressed in four internal organs of pig: liver, kidney, spleen and small intestine. The major procedures of the approach included: (1) BLAST searching against GenBank "est_others" database using human cDNA sequences as queries to screen the porcine orthologous expressed sequence tags (ESTs), (2) classifying the porcine ESTs records by resources according to certain criteria and (3) analyzing data for ESTs specifically expressed in each organ. In order to do so, four Java programs were developed. Based on the ESTs available in the GenBank database, it was found that there were at least 2,100 genes expressed in these four organs, including 128 in the liver, 81 in the kidney, 780 in the spleen, and 1,423 in the small intestine respectively (a few genes co-expressed in these tissues). Gene expression patterns, such as co-expressed genes, preferentially expressed genes and basic active genes were also compared and characterized among these organs. This study provides a comprehensive model on how to use the bioinformatics approach and Genbank databases to facilitate the discovery of new genes in livestock species.