• Title/Summary/Keyword: pig manure

Search Result 332, Processing Time 0.026 seconds

Effect of Pyroligneous Acid Liquor on the Maturity of Pig Manure Compost (목초액 처리가 돈분퇴비의 부숙도에 미치는 영향)

  • Lee, Jong-Eun;Hong, Joo-Hwa;Chang, Ki-Woon;Hwang, Joon-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.101-107
    • /
    • 2005
  • To investigate the effect of pyroligneous acid liquor (PAL) on the maturity of pig manure compost, PAL was treated to the compost piles. The treatments included applications of 100 and 300 times diluted PAL in addition to the control. The compost piles were stirred in three times at the 1st, 10th, and 25th day of composting. Temperature in the compost pile of control treatment increased from 28 to $60^{\circ}C$ within 10 days and remained nearly at the level until 30th day, then it began to decrease. On the other hand, temperature of the PAL-100 and PAL-300 treatments reached 65 to $70^{\circ}C$ within 8 days and became stabilized until 30th day, then the temperature decreased to about $28^{\circ}C$. However, the temperature of control was stabilized approximately at the 40th day. Initially, the pH of control treatment dropped from 8.2 to slightly above pH 8.0 during 4th day, but that of the PAL-100 treatment declined to 7.8. Among treatments, pH value of PAL-100 treatment was the lowest, which was about 7.3 after becoming stabilization. Also the germination index (GI) was increased at all treatments. The C/N ratio range of PAL-100 treatment was better balanced than others and was at 24.3. Moreover the round paper chromatogram of extracted solution of compost of PAL-100 treatment was the sharpest and clearest among treatments. The GI values of control, PAL-100, and PAL-300 in 60 days of composting were about 108, 120, and 118 in germination test using chinese cabbage, respectively. It can be concluded that the addition of diluted PAL solution is effective in composting of pig manure.

Changes of Physical Properties of Soils by Organic Material application (유기성 물질 시용에 따른 농경지 토양물리성 변화 연구)

  • Kim, Lee-Yul;Cho, Hyun-Jun;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.304-314
    • /
    • 2004
  • The objective of this study was to investigate the effect of organic materials (compost, straw, green manure, pig manure, seed production oil cake, and industrial by products including municipal sewage sludge, industrial sewage sludge, leather processing sludge, and alcohol fermentation processing sludge) on physical properties of soils in seven paddy and four upland fields with differential soil textures, sandy loam, loam, or clay loam, etc. The investigated physical parameters were bulk density (BD), air permeability (AP), macroporosity, hardness, shear resistance, frictional resistance, water stability aggregate (WSA), and Middleton's dispersion ratio. Except for coarse sandy loam field with weak structure, a decrease in BD and shear resistance, and an increase in macroporosity and AP in plots with applying organic materials compared to plots without applying organic materials appeared. In upland fields, the positive effect of organic materials on WSA, BD, and air permeability was higher than in paddy fields. The combined plot of NPK and compost had lower BD, hardness, and shear resistance, and higher macroporosity and WSA than plot with compost. Green manure had higher positive effect on physical properties of soils compared to other organic materials and the extent of positive effect had no significant correlation with soil organic matter content. Of industrial byproducts applied in coarse sandy loam soil under upland condition, municipal sewage sludge and pig manure compost had higher effect on increase of WSA than leather processing sludge and alcohol fermentation processing sludge. Unlike WSA, there were no significant differences between industrial byproduct types in other physical properties. in silty clay loam soil under the upland condition, straw had more positive effect on soil physical parameters than hairy vetch and pig manure. Therefore, different organic materials had differently active effect on physical parameters depending on types of soil and land use. Especially, it could be thought that well-decomposed organic materials have the advantage of an increase in organic matter content, while coarse organic materials of an increase in WSA.

Effect of Incorporation Times of Green Barley and Hairy Vetch on Rice Yield in Paddy Soil with Liquid Pig Manure (돈분액비를 시용한 녹비보리 및 헤어리베치의 혼입시기가 벼 수량에 미치는 영향)

  • Kang, Se-Won;Seo, Dong-Cheol;Lee, Sang-Gyu;Seo, Young-Jin;Park, Ju-Wang;Ryu, Jin-Hee;Kim, Min-Tae;Kang, Hang-Won;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.287-293
    • /
    • 2013
  • BACKGROUND: Soil incorporation of green manure crop(GMC) and liquid pig manure(LPM) is one of the methods for reduction of chemical fertilizer and the increase of crop yield. The objective of this study was to select optimal incorporation time of GMCs on growth and nutrient property in paddy soil treated LPM. METHODS AND RESULTS: The kinds of GMCs were Hordeum vulgare L.(green barley, GB) and Vicia villosa roth(hairy vetch, HV). The effects of GMCs on rice yield were investigated under different incorporation times of GMCs(LPM1: at 25 days before rice transplantation, LPM2: at 18 days before rice transplantation, LPM3: at 11 days before rice transplantation). In GB treatments, the biomass was greater in the order of $$LPM3{\geq_-}LPM2{\geq_-}LPM1$$. Contents of N, P and K ranged 1.21~1.28, 0.36~0.38 and 1.41~1.45%, respectively, regardless of incorporation times. The amounts of nutrient supply in GB treatments were higher in LPM1 than those in other treatment conditions. In GB treatments, rice yields in LPM1, LPM2 and LPM3 were 523, 525 and 526(increasing yield 3% than control) kg/10a, respectively. In HV treatments, the amounts of nutrient supply were higher in the order of $$LPM3{\geq_-}LPM2{\geq_-}LPM1$$. Rice yields were 530 kg/10a for LPM1, 531 kg/10a for LPM2, 535 (increasing yield 5% than control) kg/10a for LPM3 in HV treatments, respectively. CONCLUSION(s): The optimum incorporation time of green barley and hairy vetch was at 11 days before rice transplantation(LPM3) in paddy soil with liquid pig manure.

Development of a Pelletizing System of Fermented TMR for Pig Feeding

  • Cha, Jaeyoon;Ali, Mohammod;Hong, Young Sin;Yu, Byeong Kee;Lee, Sunghyun;Seonwoo, Hoon;Kim, Hyuck Joo
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.119-127
    • /
    • 2018
  • Purpose: Fermented feedstuffs have been found to improve productivity, reduce manure odor, and increase immunity. However, because there is not a commercialized pelletizing system for fermented total mixed ration (TMR) for pig feeding in Korea, a pelletizing system using TMR fermented feed was developed. Methods: The particle size, density, and volumetric density of the TMR feeds used in the test were measured. The pellet durability index (PDI, %) value of the pelletized TMR feed based on its moisture content, and the amount of pellet production based on the rotation speed of the compression roller were measured. Results: The test materials, TMR1 and TMR2, were approximately compressed to 387 kg/m3 with 18.2% (w.b.) and 544 kg/m3 with 22.2% (w.b.), respectively. Throughout this pellet molding test, the moisture content from 15 to 20% (w.b.) of mixture feedstuffs, including fermented forage, could be used for pellet molding. Based on the results, a small-scale pellet molding system of fermented TMR was designed and manufactured for pig farms. As rotation speed increased, the throughput increased, whereas the moisture content decreased by approximately 2% (w.b.) because of pellet molding. The best yield of pellets with 94.2% PDI was of 536 kg/h at 135 rpm rotation speed. Conclusions: Although the throughput of the prototype increased as the rotation speed increased, it was difficult to operate because of the greater noise and the lower PDI (%) at the higher rotation speed of the pellet molding rotor. It was found that the best production of pellets using the prototype was 536 kg/h having a PDI of 94.2% or more at a rotation speed of 135 rpm.

Change of Microflora in Livestock Manure during Composting Process (축산폐기물의 퇴비화 과정중 미생물상의 변동)

  • Whang, Kyun-Sook;Chang, Ki-Woon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.303-311
    • /
    • 1996
  • The microflora changes of 10 water-controled treatments combined with livestock manures(pig, chicken) and bulking agents(sawdust, paper sludge) were investigated. The B/F values of the P-1 and C-1(65%, $H_2O$) treatments were 3571 and 5400 respectively, but those of the P-4 and C-4(50%, $H_2O$) treatments showed very low values, 667 and 334, respectively. The B/F values tended to increase with higher water content of the treatments. In the composting processes, the successions of microflora, adapting the compost environments, took place via fluctuating temperature. In the high temperature period, the numbers of mesophilic bacteria and fungi decreased, but that of the spore forming bacteria increased. However, the number of mesophilic bacteria inereased during the cold period. The B/F values of compost ranged 25-300, which indicates a decrease in the quantity of bacteria. The time required for the temperature of compost to reach $60^{\circ}C$ showed different patterns. There was no pathogenic microorganism in the treatments which reached a high temperature in a short period of time, but, in the treatments which reached a high temperature over a Long period of time, the pathgenic microorganism was not still alive.

  • PDF

Effects of Enzyme Complex on Odor Emission from Swine Slurry and Swine Buildings (효소복합체가 양돈슬러리 및 돈사 악취발생에 미치는 영향)

  • Jung, K.H.;Han, J.C.;Kwack, S.J.;Jung, J.D.;Lee, J.W.;Kim, D.H.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • This study was carried out to investigate the effect of enzyme complex on odor emission from swine slurry and the process of making swine liquid manure. Ammonia and hydrogen sulfide concentrations were significantly decreased by using the enzyme complex of liter per ton level of liquid swine slurry in the manure storage tank according to the time. Characteristics of liquid swine slurry were affected by the enzyme complex, total nitrogen and ammonia nitrogen contents were reduced compare with control. Ammonia and hydrogen sulfide concentrations in the finishing pig building and offensive odor compound on the boundary line of swine farm were significantly decreased by spraying in swine finishing building. In conclusion, the results obtained from this study suggest that using the enzyme complex of liter per ton level of liquid swine slurry for making liquid swine manure may improve the quality of swine liquid fertilizer and reduce odor emission. Also farm scale enzyme complex treatment may improve air quality in finishing pig building and deduce offensive odor compound of swine farm.

  • PDF

Variations of N2O by no tillage and conventional-tillage practices under the different kinds of fertilizer applications on the cultivation of soybean in Korea

  • Yoo, Jin;Oh, Eun-Ji;Kim, Suk-Jin;Woo, Sun-Hee;Chung, Keun-Yook
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.314-314
    • /
    • 2017
  • Anthropogenic activities have increased the concentrations of greenhouse gases, such as $CO_2$, $CH_4$, $N_2O$, HFCs, $SF_6$, and PFCs, in the atmosphere. Among others, $N_2O$ is well known as an important greenhouse gas accounting for 7.9% of the total greenhouse effect and the effect of its emission is 310 times greater than that of $CO_2$. Agricultural $N_2O$ emissions are now thought to contribute to about 60% of the global anthropogenic $N_2O$ emission, which have been increased primarily due to fertilizer N consumption and manure management. Therefore, the reduction of $N_2O$ emissions in agriculture is being required. This study was conducted to determine the variation of $N_2O$ emissions by no-tillage (NT) and conventional tillage (CT) practices in the cultivation of soybean from the sandy loam soils under the different kinds of fertilizer treatments June through September 2016 in Cheong-ju, Republic of Korea. An experimental plot, located in the temperate climate zone, was composed of two main plots that were NT and CT, and were divided into four plots, respectively, in accordance with types of fertilizers (chemical fertilizer, liquid pig manure, hairy vetch and non-fertilizer). Among all the treatments, $N_2O$ emission was the highest in August and the lowest in June. When $N_2O$ emissions were evaluated during the growing season (June to September) in all fertilizer treatments, NT with hairy vetch treatment emitted the highest $N_2O$ emission in August, whereas, $N_2O$ emissions was the lowest in NT with non-fertilizer treatment in June, respectively (p = 0.05). Based on the cumulative amount of $N_2O$ emissions during the growing season of soybean, NT had lower $N_2O$ emission than CT by 0.01 - 0.02 kg $N_2O$, although NT had higher $N_2O$ emission than CT by 0.03 kg $N_2O$ in only the chemical fertilizer treatments. As a result, it seems that the applications of liquid pig manure and hairy vetch rather than chemical fertilizer could decrease the $N_2O$ emission in NT, compared to CT.

  • PDF

Effect on Livestock Manure Composting by the Enriched Microbial Population (미생물에 의한 축산 폐기물 퇴비화에 미치는 영향)

  • 신혜자
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.129-135
    • /
    • 2002
  • Several kinds of thermophilic, aerobic microorganisms (Bacillus genus), metal leaching microorganisms (Thiobacillus, T. ferooxidans), and other nondegradable chemical-degrading microorganisms (Pseudomonas genus) were utilized to study the effect on composting livestock manure. Under the Carbon-Nitrogen ratio (C/N) of 35∼40 and water content of 50∼65% conditions, the composting in the cycling drum reactor showed slower composting and lower temperature increase than that of the manual reactor. Element analysis after composting indicated relatively high levels of mineral contents with the substitutional effect of chemical fertilizer. Metal analysis before and after composting showed lower As in all, Cr in pig, Pb in cow, Hg in chicken, and Cu in cow manure compost than the regulation values. Compost maturity was ascertained by the several maturity tests. Salmonella and E. cozi detection test by SS or EMB agar plate confirmed the safety from the pathogenic microorganisms. The results suggest that the inoculation of metal and some other chemical degrading microorganisms during composting might decrease metal contamination and increase composting rate.

Effect of Consequent Application of Pig Manure Compost on Soil Chemical Properties and Dehydrogenase Activity in Volcanic Ash Soil (돈분퇴비 연용이 감자재배 화산회토양의 화학성과 탈수소 효소활성에 미치는 영향)

  • Joa, Jae-Ho;Moon, Doo-Gyung;Won, Hang-Yeon;Koh, Sang-Wook;Hyun, Hae-Nam;Lee, Chong-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.283-288
    • /
    • 2010
  • This study were carried out to evaluate effect of consequent application of pig manure compost (PMC) on soil chemical properties, dehydrogenase activity, and yield of potato in volcanic ash soil. The more application rate of PMC increased, the more increased soil pH, total-nitrogen, available phosphate, exchangeable cations (K, Ca, and Mg), heavymetal (Zn and Cu)contents. When application rate of PMC and crop cultivation times increased gradually, soil dehydrogenase activity was significantly increased. After third cultivation period, dehydrogenase activity showed PMC 2 ton (3.5), PMC 4 ton (6.3), PMC 6 ton (8.0 ug TPF $g^{-1}\;24h^{-1}$), respectively. The activity was twofold higher than first cultivation period. During the third cultivation period, dehydrogenase activity increased linearly comparison to Cu and Zn contents and that was correlated with Cu ($R^2$=0.907) and Zn ($R^2$=0.859) content, respectively. As the application rate of PMC increased, the yield of potato increased, but NPK+PMC 2 ton treatment was more higher than other treatments.

Uptake of Heavy Metals by Radish (Raphanus sativus cv. sodamaltari) from the Soils after Long-Term Application of Organic Wastes (유기성 폐기물 장기시용 후 토양에서 무 (Raphanus sativus cv. sodamaltari)의 중금속 흡수)

  • Kwon, Soon-Ik;Jang, Yeon-Ah;Kim, Kye-Hoon;Jung, Goo-Bok;Kim, Min-Kyeong;Hwang, Hae;Chae, Mi-Jin;Kim, Kwon-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.1
    • /
    • pp.65-72
    • /
    • 2013
  • This study was carried out to understand the long-term effects of organic waste treatments on the fate of heavy metals in soils originated from the organic wastes and consequent uptake of heavy metals by plant, together with examination of changes in soil properties and plant growth performance. In this study, the soils treated with three different organic wastes (municipal sewage sludge, alcohol fermentation processing sludge, pig manure compost) at three different rates (12.5, 25.0, 50.0 ton $ha^{-1}yr^{-1}$) for 7 years (1994 - 2000) were used. To see the long-term effect, plant growth study and soil examination were conducted twice in 2000 and 2010, respectively. There was no additional treatments of organic wastes for 10 years after the organic waste treatment for 7 years. Compared to plant growth examination conducted in 2000 using radish (Raphanus sativus cv. sodamaltari), it appeared that height, root length and diameter, fresh weight of radish grown in 2010 decreased in the plots treated with municipal sewage sludge and alcohol fermentation processing sludge and that the extent of decrease was higher with increase of sludge application rates. On the other hand, pig compost treatment increased plant height, root length and diameter, fresh weight with increasing application rates. Cu and Pb concentrations in radish root and leaves increased in 2010 compared to those in 2000 while Ni concentrations in root and leaves decreased. Zn concentration was increased only in the soils treated with pig manure compost. Multiple regression analysis among heavy metal species fractions in soils, soil pH, and metal concentrations in radish root and leaves indicated that the metal uptake by radish was governed mainly by the soil pH and subsequent increase of available heavy metal fractions in soils with organic waste treatments.