• Title/Summary/Keyword: pig liquid fertilizer

Search Result 76, Processing Time 0.027 seconds

Effect of Liquid Pig Manure on Growth of Rice and Infiltration Water Quality (돈분뇨 액비 시용이 벼 생육 및 침투수질에 미치는 영향)

  • Park, Baeg-Kyun;Lee, Jong-Sik;Cho, Nam-Jun;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.153-157
    • /
    • 2001
  • To evaluate the effect of liquid pig manure application, the growth and yield of rice and the quality of infiltration water were investigated with application of different amounts of liquid manure. At this study, liquid pig manure was treated with 100, 200, 300 and 400% of recommending nitrogen fertilizer level, respectively. Liquid manure with application rate more than 200% of recommending N fertilizer level (11kg) caused to increase of plant height and number of tiller at panicle formation stage, but it caused the plant disease and pest and plant lodging. In those treatment, number of panicles per hill and number of spikelets per panicle were increased, but yield of rice was less than chemical fertilizer treatment due to low rate of ripeness and 1,000 grain weight. $NO_3-N$ concentration in infiltration water sample collected at 90 cm of soil depth was increased with increasing application amount of liquid manure. With liquid manure application more than 200% of recommending N fertilizer level, it affected negatively on yield and environment such as groundwater quality.

  • PDF

Effects of Liquid Pig Manure on Growth of Potato, Soil Chemical Properties and Infiltration Water Quality (돈분액비 시용이 감자 생육, 토양화학성 및 침투수질에 미치는 영향)

  • Kang, Ho-Jun;Yang, Sang-Ho;Lee, Shin-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1130-1136
    • /
    • 2011
  • This study was carried out to determine the effects of pig slurry on growth of potato (Solanum tuberosum L. cv. Dejima), soil chemistry properties and infiltration water quality in volcanic ash soil and non-volcanic ash soil of Jeju. Fertilization of liquid pig manure was based on nitrogen. In volcanic ash soil and non-volcanic ash soil, there was no difference in the height and diameter of stems in chemical fertilizer and liquid pig manure application treatments. Also yields of potatoes were no significantly difference in chemical fertilizer and liquid pig manure application treatments. pH in all soil was increased by application of liquid pig manure compared to the chemical fertilizer plot. Contents of exchangeable K in all soil were accumulated excessively by fertilization of pig manure 100% compared to the chemical fertilizer 100%. But there was no difference between the chemical fertilizer 50%+liquid pig manure 50% and chemical fertilizer 100%. No difference between the chemical fertilizer and liquid pig manure was observed in available phosphate, exchangeable Ca and Mg. $NO_3$-N concentration of infiltration water sample collected at 70cm of soil depth was lower non-fertilizer than chemical fertilizer and liquid pig manure application treatments. In volcanic ash soil, the $NO_3$-N concentration of infiltration water was decreased from early, except liquid manure 100%. In non volcanic ash soil, the $NO_3$-N concentration of infiltration water increased until October 8, but then was reduced. In all soils, $NO_3$-N concentration of infiltration water was higher in the liquid manure 100% than those in the chemical fertilizer 100% and chemical fertilizer 50%+liquid pig manure 50%, but there were no differences. In conclusion, the growth of potato, fertilization of soil and $NO_3$-N content of infiltration water were not different between chemical 50%+liquid pig manure 50% and chemical 100% plot. So, liquid pig manure could be substituted for some amount of chemical fertilizer.

Changes in Characteristics of Semi-cured Pig Manure Liquid Fertilizer according to the Storage Duration and Aeration (반부숙상태 돈분뇨 액비의 저장기간 및 폭기여부에 따른 특성 변화)

  • Jeong, Kwang-Hwa;Park, Hoe-Man;Lee, Dong-Jun;Kim, Jung-Kon;Kim, Hyunjong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.109-122
    • /
    • 2022
  • Currently, most of the pig manure generated from pig farms in Korea is in the form of a slurry with a moisture content of about 97%. Pig manure slurry is a mixture of pig manure and cleaning water in the pig house. In this study, changes in properties of pig manure liquid fertilizer according to whether air was supplied or not and with the passage of storage period were analyzed for 120 days. During the experimental period, the degree of maturity of the pig manure liquid fertilizer was higher in the experimental closed batch reactors supplied with air than in the same type reactors not supplied with air. As the liquid fertilizer storage period elapsed, there was a tendency that liquid fertilizer was converted to a state of complete maturity. In the batch reactor in which air was supplied, the moisture content of pig manure slurry, which had a moisture content of 97.90%, was reduced to 96.82% at the end of the experiment. On the other hand, the moisture content in the reactor without air was reduced to 97.33%. The pH of the liquid fertilizer, which was 8.82 at the start of the experiment, changed to 7.57 in the reactor with air supplied and 8.75 in the reactor without air at the completion of the experiment. The nitrogen content in the liquid fertilizer was 0.198 mg/L on average at the start of the experiment and it was lowered to 0.076 mg/L in the air supplied reactor at the end of the experiment. On the other hand, the nitrogen content of the liquid fertilizer was lowered to 0.121 mg/L in the reactor to which air was not supplied. The phosphoric acid (P2O5) concentration in the liquid decreased higher in the liquid fertilizer filled in the reactor without air than the liquid fertilizer filled in the reactor with air supplied as the storage period elapsed. Considering the experimental results, it is considered that the quality of pig manure liquid fertilizer is improved when air is supplied to pig manure slurry and the storage period of pig manure slurry is longer.

Effect Verification of Liquid Fertilizer Derived from Pig Cadavers on Crop Growth and Soil Properties

  • Yun, Jin-Ju;Kang, Se-Won;Cho, Ju-Sik;Seo, Dong-Cheol;Moon, Sung-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.71-78
    • /
    • 2018
  • This study was conducted to investigate the application effect of liquid fertilizer using pig cadavers on potato and corn cultivations in upland field. Field experiments were designed with control (Cn), liquid fertilizer (LF), inorganic fertilizer (IF), and LF + IF treatments. Crop yields in potato and corn cultivations were higher in the order of $LF+I{\geq_-}IF{\geq_-}LF$ > Cn treatments. The potato and corn yields in LF + IF treatment were 237% and 29% greater than those in Cn treatment, respectively. Following crops harvest, soil status was improved, showing greater soil chemical properties in the LF treated areas compared to those in the Cn treatment. In addition, total $CO_2$ fluxes in LF + IF treatment during potato and corn cultivations were significantly increased compared with Cn and IF treatments. Therefore, these results suggest that LF application was effective on crop cultivation and improvement of soil fertility.

Juvenile Growth Characteristics of Fast Growing Tree Species Treated with Liquid Pig Manure (양돈분뇨 처리에 따른 속성수의 유시 생육특성)

  • Kim, Hyun-Chul;Yeo, Jin-Kie;Koo, Yeong-Bon;Park, Jung-Hyun;Baik, Eul-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.323-329
    • /
    • 2009
  • This study was conducted to analyze growth responses of fast growing tree species(8 clones of hybrid poplars, Salix alba, Metasequoia glyptostroboides, Liriodendron tulipifera, Acer okamotoanum, and Quercus palustris), the chemical characteristics of soil and $NO_3-N$ concentration of groundwater in a plantation applied with liquid pig manure. Concentrations of nitrogen and phosphorous in the soil treated with liquid pig manure were higher than that of the soil treated without liquid pig manure. With the exception of S. alba, DBH(Diameter at Breast Height) growth of all the fast growing tree species treated with liquid pig manure was higher than that of the species treated without liquid pig manure. In liquid pig manure treatment group, P. euramericana 'Eco28' clone showed the best performance in height and DBH growth. Concentration of nitrogen in the leaf with liquid pig manure was higher than that of the leaf treated without liquid pig manure. Based on the $NO_3-N$ concentration of groundwater analyzed during the experimental period, there was no evidence that groundwater was polluted by the liquid pig manure applied at the plantation.

Effect of Liquid Pig Manure and Synthetic Fertilizer on Rice Growth, Yield, and Quality (벼 생육, 수량과 품질에 대한 돈분액비와 화학비료 시용 효과)

  • Kwon, Young-Rip;Kim, Ju;Ahn, Byung-Koo;Lee, Sang-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.54-60
    • /
    • 2010
  • We have researched the changes in nutrient content in each phase of fermentation in crops treated with liquefied pig fertilizer, and have determined the best method for applying livestock excrement to cultured crops. In the execution of this experiment, rice was cultivated to full maturity at a paddy field in Jeollabuk-Do Agriculture Research and Extension Services(Jeon-buk series) from 2007 to 2008. The rice plant nitrogen absorption quantity change, according to the growth stages of the cultivated rice, was 20.3% in the rice treated with the liquid pig manure and 22.2% the chemical fertilizer at highest congelation. The chemical fertilizer showed a higher absorption quantity than the liquid manure compost. The nitrogen density at highest congelation was 1.5% in the chemical fertilizer, and 1.8% in the pig manure liquid compost not a significant difference. The stem height at harvest time was 73.8 cm in the crops treated with the liquid pig manure compost. Those treated with the chemical fertilizer, yielded a height of 4.2 cm less than the crops treated with the liquid pig manure compost. The yield was 507 kg/10a in the liquid pig manure compost treated rice, compared with the chemical fertilizer, which showed a value of 1.2% lower. The protein content was 6.3% in the rice treated with the chemical fertilizer, but 6.4% in the rice treated with the liquid pig manure compost. This is not a significant difference. However, the lodging rice plant treated with the chemical fertilizer control showed a protein content of 6.8%, which was even higher than the normal rice. The head rice ratio in the brown rice and the polished rice ended up to be lower in the crop treated with the liquid pig manure than that treated with the chemical fertilizer, Quality, the palatability value, was similar in both groups. The above result indicate that, the effect of liquid pig manure compost corresponds to the effect of chemical fertilizer, when each are scattered uniformly.

Effect of Application Time and Amount of Liquid Pig Manure on Growth of Rice and Infiltration Water Quality (벼에 대한 돈분뇨 액비의 시용량 및 시용시기 구명)

  • Park, Baeg-Kyun;Lee, Jong-Sik;Cho, Nam-Jun;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.147-152
    • /
    • 2001
  • This study was carried out to investigate the effect of application time and amount of liquid pig manure on growth and yield of rice plant and infiltration water quality. Liquid manure treatment with higher application rate and closer application time to transplanting time showed higher plant height and number of tiller at panicle formation stage, but it caused the plant disease and pest and lodging. In liquid manure treatment with higher application rate, number of panicles per hill and number of spikelets per panicle were higher but yield of rice was less than chemical fertilizer treatment due to low rate of ripeness and 1,000 grain weight. $NO_3-N$ concentration in infiltration water sample was increased with increasing application amount of liquid manure and closer application time to transplanting of rice plant. With consideration yield of rice and environment such as groundwater quality, the proper application amount were 150% and 100% of recommending N fertilizer level (11kg) at before winter and April or May treatment, respectively.

  • PDF

Specification Scheme of Pig Liquid Manure as Organic Agricultural Substances Used for Organic Farming

  • Seo, Il-Hwan;Lee, Kyo-Suk;Rhie, Ja-Hyun;Min, Se-Won;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.462-471
    • /
    • 2017
  • A more efficient use of nutrients from organic sources can benefit both farmers and water quality in agriculture. In this paper we reviewed information related to the regulations and guidelines of a swine liquid fertilizer to propose an establishment scheme for the official standards of swine manure slurry as a liquid fertilizer for organic farming. According to the law of establishment and designation of official standard of fertilizers, the liquid fertilizer made with pig liquid manure belongs to the byproduct fertilizer as of one of organic fertilizer. However, the official standards for byproduct fertilizers including the liquid fertilizer set by the Rural Development Administration (RDA), especially for a liquid swine manure fertilizer, should be revised to meet the goals of laws pursuing the environmentally sound agriculture, especially for organic farming because the terms and relevant standards need additional specific standards alike the standards such as impurities and parameter for declaration in EU. Therefore, it is suggested that official standards for byproduct fertilizers should be revised with respect to nutrient, salt content as of SAR and Na content instead of NaCl. Also we need to develop the maximum limit of heavy metals in soil to which the liquid fertilizer can be applied, as well as application rate depending on EC of the liquid fertilizer.

Determination of Nutrient Contents of Liquid Pig Manure and the Correlation of Components as Fertilizer in Western JeJu Area (제주 서부지역 양돈장에서 생산된 돈분액비의 비료성분과 그 성분간 상관관계)

  • Song Sang-Taek;Kim Mun-Chol;Hwang Kyoung-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.1
    • /
    • pp.15-24
    • /
    • 2006
  • This study was conducted to make a rapid and easy determination for the fertility of liquid pig manure as fertilizer by investigating the contents, and correlation coefficients of various nutrients. Samples were collected from 118 local pig farms in the western area of Jeju in Korea. Electrical conductivity(EC), dry matter(DM), $NH_4-N$ and minerals were determined and the relationships among them were examined. The collected liquid manure samples from 118 pig farms were classified according to the level of DM contents ;< 3% (92 farms), $3{\sim}6%$ (18 farms), $6{\sim}9%$ (5 farms) and>9% (3 farms), based on the collected data, most of the liquid manure coming from the local pig farms contain small amount of dry matter. The dry matter contents appeared highly correlated(p<0.01) with EC, $NH_4-N$, T-P, Ca, Mg and Na, except for K. In addition EC was proportional to $NH_4-N$, T-P, Ca, and Na except fer Mg. The fertilizer component ratio of $NH_4-N$, P and K in liquid pig manure were not constant, resulting in low efficiency for fertilizer. However, the toxic heavy metals of Cu etc. were below the criteria of organic fertilizer and soil contamination evaluation. Therefore, we concluded that both dry matter content and electrical conductivity could be used as an indicator for evaluating the fertility of liquid pig manure.

Runoff Characteristics of the Livestock Manure as Fertilizer at Farmland (가축분뇨 비료의 농지 유출 특성)

  • Oa, Seong-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.775-780
    • /
    • 2010
  • Over 90% of the livestock excretions were treated and utilized by land application in Korea. Excessive application of the livestock manure as fertilizer has been issued as a main pollutant source in groundwater and watersheds. This study was seasonally conducted to identify the discharging characteristics with a certain artificial rainfall intensity (13 mm/hr) in terms of surface runoff, groundwater, and soil residue mass depending on the livestock manure types. A experimental field was constructed with three different sites that pig liquid fertilizer (LF), cattle manure (CM), and standard (S). The pig liquid fertilizer of 1,200 L and cattle manure of 900 kg were sprayed on each site ($50m^2$). The standard area was firmly prevented from any other contaminants. In the LF site, farmland discharging rate (FDR) was computed as 0.006 in CODcr, 0.015 in TN, and 0.029 in TP, resulted from the mass balance among total injection mass, surface runoff and groundwater. In the CM site, 29% of the nitrogen and phosphorus in each were discharged to the surface, and 64% and 58% of them were remained in the farmland. Surface runoff rate of the CM was higher than that of the LF, resulted from the solid form of the CM.