• Title/Summary/Keyword: piezoelectric transducer

Search Result 391, Processing Time 0.035 seconds

A Study on the Characteristics of Linear Ultrasonic Motor Using Langevin type Piezoelectic Transducer (란쥬반형 압전 진동자를 이용한 선형 초음파 모터의 특성연구)

  • Choi, Myeong-Il;Park, Tae-Gone;Kim, Myeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.137-139
    • /
    • 2003
  • Transducer for ultrasonic linear motor with the symmetric and anti-symmetric modes was studied. The ultrasonic linear motor consists of two Langevin type piezoelectric vibrators that cross at right angles with each other in tip. In order to excite symmetric and anti-symmetric modes, the transducer must have a phase shift of 90 degree in space and time. Therefore, the tip of transducer moves on an elliptical motion. In this paper, the finite element analysis was used to optimize dimension and displacement of the transducer The ultrasonic motor was fabricated using the simulated result and the driving characteristics were measured. No-load velocity was 0.28[m/s] and the maximum efficiency was 30[%] in resonance frequency.

  • PDF

A Study on Fabrication and Characteristics of PVDF Ultrasonic Transducer (PVDF 초음파 변환기의 제작과 특성에 관한 연구)

  • Jung, Hong-Ryang
    • Journal of radiological science and technology
    • /
    • v.23 no.2
    • /
    • pp.33-37
    • /
    • 2000
  • The authors fabricated ultrasonic transducer with PVDF[poly(vinylidene fluoride)] piezoelectric polymer film. When impulse waves were applied to the PVDF ultrasonic transducer, the dependence of the response properties on the backing material with copper was investigated through not only theoretical calculations using Mason's equivalent circuit but also experimental measurements. The experimental pulse response properties agree with those of the theoretical calculations and the pulses were shorter than those for a PZT transducer. If such short-pulse properties are used in an medical ultrasonic image diagnosis apparatus, the resolution of the apparatus will be improved. When the insertion loss was calculated theoretically to the PVDF ultrasonic transducer, the frequency characteristics of its showed wideband frequency.

  • PDF

Vibration Characteristics of Stacked Piezoelectric Transducers (적층 압전 변환기의 진동 특성)

  • Kim, Dae Jong;Kim, Jin Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.199-206
    • /
    • 2015
  • This paper deals with the vibration characteristics of stacked transducers composed of piezoelectric discs, which are main elements of ultrasonic sensors or actuators. The stacked transducers were devised in the sense of natural frequencies. Two- or three-layer transducers were fabricated with piezoelectric discs of different diameters. The natural frequencies were determined by the finite element analysis and they were verified by comparing them with experimental results. It appeared that the natural frequencies of the stacked piezoelectric transducers include the natural frequencies of the constituent piezoelectric discs and the natural frequencies caused by stacking. Based on these results, it would be possible to predict the vibration characteristics of the stacked piezoelectric transducers in a design process.

Piezoelectric Polymer Ultrasound Transducers and Its Biomedical Applications (압전고분자 초음파 트랜스듀서와 생의학적 응용)

  • Ha, Kang-Lyeol;Cao, Yonggang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.585-596
    • /
    • 2012
  • PVDF(poly vinylidene fluoride) and P(VDF-TrFE)(poly vinylidene fluoride-tetrafluoroethylene) are the typical piezoelectric polymers with unique properties. Even they are inferior to conventional piezoelectric ceramics PZT in electromechanical conversion efficiency and interior loss, though they are superior in receiving sensitivity and frequency bandwidth. Their acoustic impedances are relatively close to water or biological tissue and it is easier to make thin film than other piezoelectric materials. Futhermore, the film is so flexible that it is easy to attach on a complex surface. Those properties are suitable for the ultrasound transducers which are useful for medical and biological application, so that various types of polymer transducers have been developed. In this paper, several important considerations for design and fabrication of piezoelectric polymer transducers were described and their effect on the transducer performance were demonstrated through the KLM model analysis. Then, it was briefly reviewed about the structures of the polymer transducers developed for obtaining images as well as the characteristics of the images in several important medical and biological application fields.

Finite Element Analysis for the Development of Bone Surgery Piezoelectric Ultrasonic Medical Device and its Experimental Verification (골수술용 압전형 초음파 의료기기 개발을 위한 유한요소해석 및 이의 실험적 검증)

  • Song, Tae-Ha;Lee, Jung-Ho;Choi, Jong Kyun;Lee, Hee Won
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.319-330
    • /
    • 2022
  • In this study, the optimal driving frequency was derived through finite element analysis (FEA) to optimize the developed piezoelectric ultrasonic medical devices(PUMD) for bone surgery. The core of the PUMD is the piezoelectric ceramic (PZT), which is a vibrator that generates vibration energy. The piezoelectric ceramic shows the maximum current value with respect to the input voltage at the resonance frequency, which generates the maximum mechanical vibration. In the past, various studies have been conducted related to the analysis of PUMD, but most of the research so far has been limited to free vibration analysis. However, in order to derive the accurate resonant frequency, the initial stress generated by bolt tightening in the bolt-clamped Langevin type transducer (BLT) must be considered. In this study, after designing a PUMD, the driving performance according to the bolt tightening value was analyzed through FEA, and this was experimentally verified. First, the resonance mode and frequency response were confirmed through modal and harmonic analysis at 20-40 kHz, which is known as the optimal driving frequency band of PUMD for bone surgery. In addition, the design of the PUMD was confirmed by checking the mechanical behavior of the tip and the piezoelectric ceramic at the resonant frequency. Consequentially, the characteristic evaluation was performed, and it was confirmed that the resonant frequency result derived through the FEA was reasonable. Through this study, we presented a more rational FEA method than before for BLT transducers. We expect that this will shorten the time and cost of developing a PUMD, and will enable the development of more stable and high-quality products.

Synthesis of Ag-Pd Electrode having Oxide Additive (산화물을 첨가한 Ag-Pd 전극의 제조)

  • Lee, Jae-Seok;Lee, Dong-Yoon;Song, Jae-Sung;Kim, Myoung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.735-738
    • /
    • 2003
  • Downsizing electronics requires precision position control with an accuracy of sub-micron order, which demands development of ultra-fine displacive devices. Piezoelectric transducer is one of devices transferring electric field energy into mechanical energy and being capable for fine displacement control. The transducer has been widely used as fine Position control device Multilayer piezoelectric actuator, one of typical piezo-transducer, is fabricated by stacking alternatively ceramic and electrode layers several hundred times followed by cofiring process. Electrode material should be tolerable in the firing process maintaining at ceramic-sintering temperatures up to $1100{\sim}1300^{\circ}C$. Ag-Pd can be used as stable electrode material in heat treatment above $960^{\circ}C$. Besides, adding small quantity ceramic powder allow the actuator to be fabricated in a good shape by diminishing shrinkage difference between ceramic and electrode layers, resulting in avoidance of crack and delamination at and/or nearby interface between ceramic an electrode layers. This study presents synthesis of nano-oxide-added Ag/Pd powders and its feasibility to candidate material tolerable at high temperature. The powders were formed in a co-precipitation process of Ag and Pd in nano-oxide-dispersed solution where Ag and Pd precursors are melted in $HNO_3$ acid.

  • PDF

Design and Implementation of a Vibration Transducer based on PZT Multi-layered Actuator for Implantable Middle Ear Hearing Devices (PZT 적층 압전체 기반의 인공중이용 트랜스듀서 설계 및 구현)

  • Park, I.Y.;Jung, E.S.;Seong, K.W.;Kim, M.W.;Cho, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • Recently, implantable middle ear hearing devices (IMEHDs) have been developed to overcome the problems of conventional hearing aids. In this paper, a piezoelectric floating mass transducer (PFMT) based on a PZT multi-layered actuator has been designed and implemented using the approximated mechanical vibration modeling for the PFMT and the analysis of vibration characteristics through the transformation into the equivalent electrical model. The implemented PFMT has been attached to the ossicle of a human cadaver's temporal bone and the in-vitro experiment has been performed. Through the experimental results, it has been verified that the PFMT applied into our developed implantable middle ear hearing device can be used for an IMEHD transducer.

  • PDF

Finite element analysis for acoustic and temperature characteristics of a piezoelectric HIFU transducer at 10 MHz (10 MHz용 압전 HIFU 트랜스듀서의 음향 및 온도 특성에 대한 유한요소해석)

  • Jong-Ho Kim;Il-Gok Hong;Ho-Yong Shin;Hyo-Jun Ahn;Jong-In Im
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.3
    • /
    • pp.116-123
    • /
    • 2023
  • A high intensity focuses ultrasound (HIFU) is one of the emerging technologies in the biomedical field. The piezoelectric HIFU transducer is a device that utilizes the thermal energy generated by high ultrasound energy. Recently an operating frequency of the HIFU transducer is to expand above a 7 MHz. In this study, the acoustic pressures and temperature distributions in the tissue that generated by the HIFU transducer at 10 MHz were calculated with the finite element method. In addition, the pressure focusing characteristics of the device were analyzed. The geometrical variables are the piezomaterial thickness, lens shape, water height, and film thickness. The results shown that the acoustic pressure increased and saturated gradually when the height/radius (HL/RL) ratio of the lens increased. Moreover, the focal area was gradually decreases with HL/RL ratio of the lens. In case of the optimized HIFU transducer, the maximum pressure and temperature were analyzed about 19 MPa and 65℃ respectively. And the -3 dB focused distances in the axial and lateral direction are around 2.3 mm and 0.23 mm respectively.

Optimal Design of Deep-water 30 kHz Omnidirectional Sonar Transducer using a Coupled FE-BEM (결함형 유한요소-경계요소 기법에 의한 심해저용 30 kHz 전방향성 소나 변환기 최적 설계)

  • Jarng Soon Suck;Choi Heun Ho;Lee Je Hyeong;Ahn Heung Gu
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.275-280
    • /
    • 1999
  • Deep-water sonar transducers of FFR (Free Flooded Ring) type have been designed using a coupled FE-BEM. The proposed sonar transducers are composed of piezoelectric ceramic tubes and structural steel materials for simple fabrication. In order to have an omnidirectional beam pattern around 30 kHz, a conic steel is placed below a piezoelectric tube or a steel disc is placed between two piezoelectric tubes. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with external electrical excitation conditions. Various results are available such as directivity patterns and transmitting voltage responses. The most optimal structure and dimensions of the steel material were calculated, so that the beam patterns of the sonar transducers had +/- 3 dB omnidirectivity at 30 kHz.

  • PDF

Optimal Directivity Synthesis and Vibration Analysis of (equation omitted)-type Piezoelectric Transducer ((equation omitted)형 압전 트랜스듀서의 최적 지향성합성과 진동해석)

  • Cho Ki-ryang;Kwak Doo-sung;Kim On;Kim Chun-suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1818-1827
    • /
    • 2004
  • This paper carried out numerical calculation about the directivity synthesis problem in two dimension of adaptive ultrasonic transducers. Adaptive system for directivity synthesis is constructed by multi-electrode array on the surface of only one piezoelectric ceramic plate combined with optimal algorithm. In order to realize the desired directivity that is established arbitrarily, the optimal vibrational displacement is calculated by optimal algorithm (DFP method). Secondly, the optimal voltage of electrodes which is correspond to the calculated vibrational displacement is calculated used by finite element method and DFP method. And, the vibration analysis in two dimension of piezoelectric transducer carried out by means of finite element method.