• Title/Summary/Keyword: piezoelectric signal

Search Result 228, Processing Time 0.04 seconds

Active shape control of a cantilever by resistively interconnected piezoelectric patches

  • Schoeftner, J.;Buchberger, G.
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.501-521
    • /
    • 2013
  • This paper is concerned with static and dynamic shape control of a laminated Bernoulli-Euler beam hosting a uniformly distributed array of resistively interconnected piezoelectric patches. We present an analytical one-dimensional model for a laminated piezoelectric beam with material discontinuities within the framework of Bernoulli-Euler and extent the model by a network of resistors which are connected to several piezoelectric patch actuators. The voltage of only one piezoelectric patch is prescribed: we answer the question how to design the interconnected resistive electric network in order to annihilate lateral vibrations of a cantilever. As a practical example, a cantilever with eight patch actuators under the influence of a tip-force is studied. It is found that the deflection at eight arbitrary points along the beam axis may be controlled independently, if the local action of the piezoelectric patches is equal in magnitude, but opposite in sign, to the external load. This is achieved by the proper design of the resistive network and a suitable choice of the input voltage signal. The validity of our method is exact in the static case for a Bernoulli-Euler beam, but it also gives satisfactory results at higher frequencies and for transient excitations. As long as a certain non-dimensional parameter, involving the number of the piezoelectric patches, the sum of the resistances in the electric network and the excitation frequency, is small, the proposed shape control method is approximately fulfilled for dynamic load excitations. We evaluate the feasibility of the proposed shape control method with a more refined model, by comparing the results of our one-dimensional calculations based on the extended Bernoulli-Euler equations to three-dimensional electromechanically coupled finite element results in ANSYS 12.0. The results with the simple Bernoulli-Euler model agree well with the three-dimensional finite element results.

Proposal of a piezoelectric floating mass transducer for implantable middle ear hearing devices (이식형 인공중이를 위한 압전 플로팅 매스 트랜스듀서의 제안)

  • Lee, Chang-Woo;Kim, Min-Kyu;Park, Il-Yong;Song, Byung-Seop;Roh, Yong-Rae;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.322-330
    • /
    • 2005
  • A new type of transducer, piezoelectric floating mass transducer (PFMT) which has advantages of piezoelectric and electromagnetic transducer has been proposed and implemented for the implantable middle ear hearing devices. By the uneven bonding of piezoelectric material to the inner bottom of transducer case, the PFMT can vibrate back-and-forth along the longitudinal axis of the transducer even though the piezoelectric material within the cylindrical case produces only the bilateral expansion and contraction according to the applied electrical signal. To improve efficiency of the PFMT, the multi-layered piezoelectric material has been adapted. The small number of components in the PFMT enables the simple manufacturing and the easy implanting into the middle ear. In order to examine the characteristics of vibration, mechanical modeling and finite element analyses of the proposed transducer have been performed. From the result of theoretical analyses and the measured data from the experiment, it is verified that the implemented PFMT can be used in implantable middle ear hearing devices.

Thermo-piezoelectric $Si_3N_4$ cantilever array on a CMOS circuit for probe-based data storage using wafer-level transfer method (웨이퍼 본딩을 이용한 탐침형 정보 저장장치용 압전 켄틸레버 어레이)

  • Kim Young-Sik;Jang Seong-Soo;Lee Caroline Sun-Young;Jin Won-Hyeog;Cho Il-Joo;Nam Hyo-Jin;Bu Jong-Uk
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.96-99
    • /
    • 2006
  • In this research, a wafer-level transfer method of cantilever away on a conventional CMOS circuit has been developed for high density probe-based data storage. The transferred cantilevers were silicon nitride ($Si_3N_4$) cantilevers integrated with poly silicon heaters and piezoelectric sensors, called thermo-piezoelectric $Si_3N_4$ cantilevers. In this process, we did not use a SOI wafer but a conventional p-type wafer for the fabrication of the thermo-piezoelectric $Si_3N_4$ cantilever arrays. Furthermore, we have developed a very simple transfer process, requiring only one step of cantilever transfer process for the integration of the CMOS wafer and cantilevers. Using this process, we have fabricated a single thermo-piezoelectric $Si_3N_4$ cantilever, and recorded 65nm data bits on a PMMA film and confirmed a charge signal at 5nm of cantilever deflection. And we have successfully applied this method to transfer 34 by 34 thermo-piezoelectric $Si_3N_4$ cantilever arrays on a CMOS wafer. We obtained reading signals from one of the cantilevers.

  • PDF

Smart Actuators Composed of Piezoelectric Ceramics and Highly Magnetostrictive films (압전세라믹 기판과 고자왜박막을 결합한 스마트액츄에이타)

  • Sin, Gwang-Ho;Arai, Ken-Ichi;Sa-Gong, Geon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.5
    • /
    • pp.289-293
    • /
    • 2000
  • This paper presents a study on the linear compensation of nonlinear hysteric actuators using the highly magnetostrictive film pattern as a strain sensor. Elements had a hybrid structure, in which thin soft glass substrate with the highly magnetostrictive amorphous FeCoSiB film was bonded on the PZT piezoelectric substrate. The magnetostrictive film as a strain sensor detects the deflection of an actuator, and a voltage signal from the strain sensor related to the deflection of an actuator is used for the linear control of an actuator.

  • PDF

Design Sensitivity Analysis and Topology Optimization of Piezoelectric Crystal Resonators (압전 수정진동자의 설계민감도 해석과 위상 최적설계)

  • Ha Youn-Doh;Cho Seon-Ho;Jung Sang-Sub
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.335-342
    • /
    • 2005
  • Using higher order Mindlin plates and piezoelectric materials, eigenvalue problems are considered. Since piezoelectric crystal resonators produce a proper amount of electric signal for a thickness-shear frequency, the objective is to decouple the thickness-shear mode from the others. Design variables are the bulk material densities corresponding to the mass of masking plates for electrodes. The design sensitivity expressions for the thickness-shear frequency and mode shape vector are derived using direct differentiation method(DDM). Using the developed design sensitivity analysis (DSA) method, we formulate a topology optimization problem whose objective function is to maximize the thickness-shear component of strain energy density at the thickness-shear mode. Constraints are the allowable volume and area of masking plate. Numerical examples show that the optimal design yields an improved mode shape and thickness-shear energy.

  • PDF

Motion Analysis of Inchworm using Robust control and Input shaping (강인제어와 입력성형 기법을 이용한 이송 자벌레의 운동 해석)

  • Yang, Kwang-Yong;Hwang, Yun-Sik;Kim, Yeung-Shik;Kim, In-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.195-200
    • /
    • 2008
  • This paper presents motion control of the Inchworm composed of the piezoelectric actuators and mechanical elements. Piezoelectric actuator shows nonlinear response characteristics including hysteresis due to the ferroelectric characteristics. This paper proposes feedback control scheme to improve the ability of tracking response to complex input signal and suppress the phenomenon of hysteresis using the sliding mode control technique with the integrator. The sliding mode control system has the limit to minimize both the settle time and overshoot. For making up this limit, this paper also suggests input shaping technique suitable to the inchworm control system.

  • PDF

Sensing of ultra-low magnetic field by magnetoelectric (ME) composites (자기-전기(ME) 복합체를 활용한 초미세 자기장 감지 기술)

  • Hwang, Geon-Tae;Song, Hyunseok;Jang, Jongmoon;Ryu, Jungho;Yoon, Woon-Ha
    • Ceramist
    • /
    • v.23 no.1
    • /
    • pp.38-53
    • /
    • 2020
  • Magnetoelectric (ME) composites composed of magnetostrictive and piezoelectric materials derive interfacial coupling of magnetoelectric conversion between magnetic and electric properties, thus enabling to detect ultra-low magnetic field. To improve the performance of ME composite sensors, various research teams have explored adopting highly efficient magnetostrictive and piezoelectric phases, tailoring of device geometry/structure, and developing signal process technique. As a result, latest ME composites have achieved not only outstanding ME conversion coefficient but also sensing of ultra-low magnetic field below 1pT. This article reviews the recent research trend of ME composites for sensing of ultra-low magnetic field.

Estimation using PZT for Vibration of Plates (압전소자를 이용한 판의 진동평가)

  • Kim, Ie-Sung;Park, Kang-Geun;Kim, Wha-Jung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.35-41
    • /
    • 2006
  • Various monitoring sensors have been used for the monitoring, damage and vibration prediction of structures. They have been used for sensing damage in a variety of materials and structures such as piezoelectric materials (PZT) and electric strain gauges. But, many experiments of vibration were not performed. The PZT changes physical force if load cell to electrical signal due to deformation of structure. The voltage change of piezoelectric sensors for plates are used for vibration prediction. In this study, a fundamental study for vibration prediction using piezoelectric sensors are discussed in plates.

  • PDF

Finite element analysis for piezoelectricity of multilayer ceramic capacitor (적층 세라믹 콘덴서의 압전 유한요소 해석모델 구축)

  • Park, No-Cheol;Ko, Byung-Han;Park, Young-Pil;Park, Heungkil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.72-74
    • /
    • 2014
  • Multilayer ceramic capacitor (MLCC) makes acoustic noise of electronic devices. Conversed piezoelectric effect of dielectric substance consists of $BaTiO_3$ causes vibration of MLCC so it must be analyzed to reduce the noise. Thus, finite element model for piezoelectric analysis of MLCC was constructed in this paper. Piezoelectric characteristics of MLCC was considered for the accurate simulation result. Displacement response for sinusoidal voltage signal was measured and simulation result was verified with test result.

  • PDF

Lour Voltage Operated RFMEMS Switch for Advanced Mobile System Applications (차세대 이동통신시스템에 적용을 위한 저전압구동의 RFMEMS 스위치)

  • Seo, Hye-K.;Park, Jae-Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2395-2397
    • /
    • 2005
  • A low voltage operated piezoelectric RF MEMS in-line switch has been realized by using silicon bulk micromachining technologies for advanced mobile/wireless applications. The developed RF MEMS in-line switches were comprised of four piezoelectric cantilever actuators with an Au contact metal electrode and a suspended Au signal transmission line above the silicon substrate. The measured operation dc bias voltages were ranged from 2.5 to 4 volts by varying the thickness and the length of the piezoelectric cantilever actuators, which are well agreed with the simulation results. The measured isolation and insertion loss of the switch with series configuration were -43dB and -0.21dB (including parasitic effects of the silicon substrate) at a frequency of 2GHz and an actuation voltage of 3 volts.

  • PDF