• Title/Summary/Keyword: piezoelectric material

Search Result 1,405, Processing Time 0.029 seconds

Output Power characteristics of the Piezoelectric Transformer for LCO Backlight with Piezoelectric and Piezoelectric Properties (유전 및 압전특성에 따른 LCD Backlight용 압전 트랜스포머의 출력전력특성)

  • 민석규;류주현;정회승;홍재일;윤현상;손은영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.852-856
    • /
    • 2000
  • In this paper, we investigated the output power, step-up ratio and efficiency properties of piezoelectric transformer with dielectric and piezoelectric characteristics of manufactured ceramics. The piezoelectric transformers with $2.0$\times$10$\times$48[$mm^3$] size were fabricated and its electrical properties were measured. When output power of 6W was constantly maintained, T2 piezoelectric transformer showed the minimum temperature rise of $9(^{\circ}C)$ at $150(K\Omega)$ load resistance. However, T1 piezoelecric transformer showed the temperature rise of $7.2(^{\circ}C)$ at $200(K\Omega)$ load resistance. The 6[w] CCFL (Cold Cathode Fluorescent Lamp) was successfully driven by T1 and T2 piezoelectric transformer but, its temperature rise $\Delta$T[$^{\circ}C)$] was generated more than $20(^{\circ}C)$. It is concluded that we have to design the piezoelectric transformers so that its output impedance correspond to the load impeadance, including any stray capacitance.

  • PDF

Calculation of Intensity Factors Using Weight Function Theory for a Transversely Isotropic Piezoelectric Material (횡등방성 압전재료에서의 가중함수이론을 이용한 확대계수 계산)

  • Son, In-Ho;An, Deuk-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.149-156
    • /
    • 2012
  • In fracture mechanics, the weight function can be used for calculating stress intensity factors. In this paper, a two-dimensional electroelastic analysis is performed on a transversely isotropic piezoelectric material with an open crack. A plane strain formulation of the piezoelectric problem is solved within the Leknitskii formalism. Weight function theory is extended to piezoelectric materials. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory.

Position Control of Ultra-Precision Machine Tool Post using Piezoelectric Material(1) (압전 재료를 이용한 초정밀 가공기용 공구 위치 제어(1))

  • 김승한;송하성;송재욱;김의중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.162-166
    • /
    • 1996
  • This paper presents a position control of ultra-precision machine tool post using piezoelectric material. A stack-type piezoelectric actuator Is employed in a hinge-type tool holder. An assumed linear transfer function of the practical nonlinear plant is established through the comparison of transfer functions and step responses in the experiments and the simulations. Several types of feedforward/feedback controllers are designed via computer simulations using the assumed linear transfer function. The position tracking control experiments are undertaken to show the control efficiency of each controller.

  • PDF

Voltage Gain Characteristics of Piezoelectric Transformer for Power Supply (Power Supply용 압전 트래스포머의 Voltage Gain특성)

  • 김성진;남성이;이수호;홍재일;류주현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.191-194
    • /
    • 1998
  • This Paper present a new structure for a piezoelectric transformer, operating in thickness extensional vibration mode. Modified PbTiO$_3$ family ceramics were used for the Piezoelectric transformer, because it is a material with large anisotropy between electromechanical coupling facters k$\sub$t/ and k$\sub$p/. Piezoelectric transformer was fabricated that is 20mm long, 20mm wide and 3.1mm thick. Resonant frequencies of sencond thickness extensional vibration mode is 1.72MHz at loading resistance 100{$\Omega$]. And Voltage gain of piezoelectric ceramics is showed 0.53 at resonant frequency of sencond thickness extensional vibration mode.

  • PDF

Energy Harvesting for Bio MEMS using Piezoelectric Materials (압전재료를 이용한 Bio MEMS 에너지 획득)

  • Sohn Jung Woo;Choi Seung Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.199-206
    • /
    • 2005
  • In this work, a theoretical investigation on the energy harvesting is undertaken using one of potential smart materials; piezoelectric material. The energy equations fur both square and circular types of the piezoelectric material are derived, and the energy generated from two commercially available Products: $PZT (Lead/Zirconium/Titanium: Pb(Zr,\;Ti)O_3)$ and PVDF (polyvinylidene fluoride) are investigated in terms of the thickness and area. In addition, a finite element analysis (FEA) is undertaken to obtain the generated energy due to the uniform pressure applied on the surface of the piezoelectric materials. A comparative work between the theory and the FEA is made followed by the brief discussion on the usage of the harvested energy for Bio MEMS.

Electrical Characteristics of Piezoelectric Transformer using Low Temperature Sintering PCW-PMN-PZT Ceramics (저온소결 PCW-PMN-PZT 세라믹스를 적용한 압전변압기의 전기적 특성)

  • Chung, Kwang-Hyun;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.350-356
    • /
    • 2006
  • In this study, piezoelectric transformer was manufactured at the sintering temperature of $950^{\circ}C$, and then the feasibility of application to low temperature sintering piezoelectric transformers was investigated by evaluating the electrical characteristics of it. The voltage ratio of piezoelectric transformer showed the maximum value at the resonant frequency of input part, and increased according to the increase of load resistance. The output power and efficiency of piezoelectric transformer showed the superior properties when the output impedance of it coincides with the load resistance. Piezoelectric transformer manufactured at the low temperature of $950^{\circ}C$ showed the heat generation less than $20^{\circ}C$ at the output power of 30 W, and stable driving characteristics.

Fabrication and evaluation of a piezoelectric fan (압전팬의 제작과 평가)

  • Kim, Dae-Young;Choi, Jae-Eup;Chung, Su-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.693-696
    • /
    • 2003
  • Piezoelectric ceramics were made by a doctor blade methode and piezoelectric fans were fabricated by sandwiched a slim and long metal between two layers of ceramics. A maximum displacement of piezoelectric fan occurs in the resonance frequency of a long metal and the resonance frequency of them is in inverse proportion to the square of a length of metal. The piezoelectric fan made from a wide and thin piezoelectric ceramics($13{\times}0.2{\times}30mm^3$) showed a maximum displacement in all samples, and the maximum displacement was about 20mm in a commercial power (200V, 60Hz of sine wave).

  • PDF

Finite Element Analysis of Step-down Piezoelectric Transformer with Various Shape (형태의 변화에 따른 강압용 압전변압기의 유한요소해석)

  • Chong, Hyon-Ho;Park, Tae-Gone;Kwon, Oh-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.697-700
    • /
    • 2003
  • This paper presents design and analysis of step-down piezoelectric transformer for application to AC-adapters. These transformers are consist of rectangular type and disk type multilayered piezoelectric ceramic plate. This piezoelectric transformer operated in third thickness resonance vibration mode. Finite element methode(FEM) was used for analysing transformer. Vibration mode and electric field of piezoelectric transformer were simulated at resonance frequency. As results, rectangular type transformer's output voltage was higher than the disk type. But disk type transformer's current was lagger than rectangular type. These results are assumed that disk type transformer's mixed vibration mode influence transformer's output characteristics. From these results, we expect that disk type piezoelectric transformer is more adoptable than rectangular plate type piezoelectric transformer for AC adapters.

  • PDF

The Characteristics of $\lambda$ Vibration-Mode Type Piezoelectric Transformer ($\lambda$ 진동로드형 압전 변압기의 특성)

  • 정수현;이종섭;홍종국;박철현;이강원;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.327-330
    • /
    • 1999
  • In this paper, the electrical characteristics of λ vibration-mode piezoelectric transformer for applying to CCFL driving inverter was investigated. Piezoelectric transformer was made of PZT - PMN -0.5wt% N $b_2$ $O_{5}$ composition. As a results of the electrical characteristics of piezoelectric transformer, when applied voltage was 35[ $V_{rms}$] in 100[k$\Omega$] load resistance, output voltage was about 510[ $V_{rms}$] and output power was more than 2[W]. As output power increased, step-up ratio and temperature was very stable until output power was 2.5(W). Also, Efficiency was maximum in 70[k$\Omega$] load resistance, and about 89[%]. Also, when piezoelectric transformer was continuously driven for 10[hrs], output voltage and temperature change ratio was fess than 10[%], and very stable. Conclusively, piezoelectric transformer fabricated in this paper can be applied to piezoelectric inverter for CCFL driving.g.

  • PDF

Design and Characteristics of a Monolithic Inchworm Type Actuator (MITA) (일체형 인치웜 방식 액추에이터의 설계 및 특성)

  • Kang, Hyung-Won;Lee, Hyeong-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.44-44
    • /
    • 2007
  • New inchworm type piezoelectric actuator design, which can reduce the number of the piezoelectric body for manufacturing inchworm type actuator, is suggested in this work. Inchworm type actuator consists of three or more piezoelectric bodies, on the other hand the new-designed inchworm type actuator has only one piezoelectric body. The one piezoelectric body that size is $2\;{\times}\;2\;{\times}\;4\;[mm^2]$ (DWL) has 2 clamping part and 1 extending part. The size of the new-designed actuator with one piezoelectric body is $5\;{\times}\;6\;{\times}\;9\;[mm^2]$ (DWL). The new-designed inchworm type actuator performed the operation at a cycle (6 steps) of $0.3{\mu}m$ per $33.3{\mu}s$ and a generated force of 0.6N.

  • PDF