• 제목/요약/키워드: piezoelectric impedance

검색결과 201건 처리시간 0.022초

Power output and efficiency of a negative capacitance and inductance shunt for structural vibration control under broadband excitation

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chang, Lulu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.223-246
    • /
    • 2015
  • Structural vibration control using a piezoelectric shunt is an established control technique. This technique involves connecting a piezoelectric patch, which is bonded onto or embedded into the vibrating structure, to an electric shunt circuit. Thus, vibration energy is converted into electrical energy and is dissipated through a network of electrical components. Different configurations of shunt have been researched, among which the negative capacitance-inductance shunt has gained prominence recently. It is basically an analog, active circuit consisting of operational amplifiers and passive elements to introduce real and imaginary impedance on the vibrating structure. The present study attempts to model the behavior of a negative capacitance-inductance shunt in terms of power output and efficiency using circuit modeling software. The shunt model is validated experimentally and is used to control the structural vibration of an aluminum beam, connected to a pair of piezoelectric patches, under broadband excitation. The model is also used to determine the optimal parameters of a negative capacitance-inductance shunt to increase the efficiency and predict the voltage output limit of op-amp against the supply voltage.

저누설 다이오드를 사용한 저전력 압전발전기의 효율 개선에 관한 연구 (Energy Conversion Efficiency Improvement of Piezoelectric Micropower Generator Adopting Low Leakage Diodes)

  • 김혜중;강성묵;김호성
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.938-943
    • /
    • 2007
  • In this paper, we show that, in case of piezoelectric micropower generator, just replacing Schottky diodes in the bridge rectifier with ultra-low reverse leakage current diodes improves the mechanical-to-electrical energy conversion efficiency by more than 100%. Experimental and PSPICE simulation results show that, due to the ultra-low leakage current, the charging speed of the circuit employing PAD1 is higher than that of the circuit employing Schottky diodes and the saturation voltage of the circuit employing PAD1 is also higher. This study suggests that , when the internal impedance of source is very large (a few tens of $M{\Omega}$) such that maximum charging current is a few microamperes or less, in order to realize literally the energy scavenging system, ultra-low reverse leakage current diodes should be used for efficient energy conversion. Since low-level vibration is ubiquitous in the environment ranging from human movement to large infrastructures and the mechanical-to-electrical energy conversion efficiency is much more critical for use of these vibrations, we believe that the improvement in the efficiency using ultra-low leakage diodes, as found in this work, will widen greatly the application of piezoelectric micropower generator.

PZT 압전 세라믹스를 사용한 2중 모우드 초음파 트랜스듀서 제작 (Fabrication of dual mode ultrasonic transducers with PZT piezoelectric ceramics)

  • 김연보;노용래;남효덕
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권5호
    • /
    • pp.572-579
    • /
    • 1995
  • Most of conventional ultrasonic transducers are constructed to generate either longitudinal or shear waves, but not both of them. We investigate the mechanism of dual mode transducers that generate both of the longitudinal and shear waves simultaneously with single PZT element. The study is aimed to find the optimally desired cut by examining the anisotropic piezoelectric properties. Theory predicts that a mixed P/S mode transducer can be constructed using a rotated Z-cut of PZT piezoelectric ceramics. We study the performance of a PZT element as a function of its rotation angle so that its efficiency is optimized to excite the two waves as much as equally strong. The results are verified by the waveform in pulse-echo computer simulation and experiments. When the transducer is subjected to impedance analysis, it shows two thickness mode resonances, each of which being a mixed P/S thickness mode. By examining wave speeds on E transmitter delay line receiver setup, it is confirmed that the transducer can transmit and detect both longitudinal and shear wave simultaneously.

  • PDF

휴대용 의료 초음파 프로브 적용을 위한 압전체 제조 및 특성 (Modified Piezoelectric Ceramics for Portable Ultrasonic Medical Probe Application)

  • 강동헌;채미나;홍세원
    • 한국전기전자재료학회논문지
    • /
    • 제29권8호
    • /
    • pp.483-488
    • /
    • 2016
  • Ultrasound imaging by using piezoelectric materials, such as lead zirconium titanate (PZT) has been one of the most preferred modes of imaging in the medical field due to its simple, low cost and non-ionizing radiation in comparison to other imaging techniques. Recently, the market demand for portable ultrasound is becoming larger with applications in developing countries, disaster area, military, and emergency purposes. However, most of ultrasound probes used is bulky and high power consumable, so unsuitable for such applications. In this study, the 3 layered ceramic specimen consisted of 128 pitches of $420{\mu}m$ in width and $450{\mu}m$ in thickness were prepared by using the Ti-rich PZT compositions co-fired at $1,050^{\circ}C$. Their electrical and ultrasound pulse-echo properties were investigated and compared to the single layer specimen. The 3 layered ultrasound probe showed 1.584 V of Vp-p, which is 3.2 times higher than single layered one, implying that it would allow effectively such a portable ultrasound probe system. The result were discussed in terms of higher capacitance, lower impedance and higher dielectric coefficient of the 3 layered ultrasound probe.

압전 단결정 재료를 이용한 이식형 인공중이용 적층 액츄에이터 개발 (Development of a Multi-Layer Actuator With Piezoelectric Single Crystals for an Implantable Hearing Aid)

  • 이상구;노용래;선주헌
    • 한국음향학회지
    • /
    • 제24권3호
    • /
    • pp.127-132
    • /
    • 2005
  • 이식형 인공중이용 트랜스듀서는 주파수 특성 및 구동 성능이 우수해야 하고 크기가 작아야 한다. 이러한 트랜스듀서로서 단결정 압전 재료인 PMN-PT를 이용한 적층형 액츄에이터를 제안하였고, 유한요소해석 및 제작실험을 통해 그 타당성을 밝혔다. 실험에서는 두께 $0.2{\cal}mm$를 갖는 시편을 14층으로 쌓아 최종적으로 $1{\cal}mm{\times}1{\cal}mm{\times}2.8{\cal}mm$ 크기의 PMN-PT 적층형 액츄에이터를 제작하였다. 제작된 PMN-PT 액츄에이터의 성능은 Impedance Spectrum과 구동변위 측정을 통해 PZT 액츄에이터와 비교, 평가하였고, 이를 통해 단결정 재료인 PMN-PT를 이용할 경우 우수한 성능의 인공중이용 액츄에이터 제작이 가능함을 확인하였다.

공진법 기반의 [011] 분극 Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 압전단결정 물성규명 (Characterization of [011] Poled Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals by Resonance Method)

  • 제엽;심민섭;조요한;이원옥;이상구;이정민;서희선
    • 한국전기전자재료학회논문지
    • /
    • 제34권6호
    • /
    • pp.466-474
    • /
    • 2021
  • [011] poled ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals have been investigated for active materials for acoustic transducers because of their high piezoelectric properties in both shear and transverse modes. In order to use [011] poled PIN-PMN-PT single crystals for acoustic transducers, the characterization of full-matrix material properties is required. In this study, full sets of compliance, dielectric, and piezoelectric constants of [011] poled rhombohedral PIN-PMN-PT were measured by a resonance method. Dimensions and geometries of 12 samples were proposed for measuring 17 independent material constants of [011] poled rhombohedral PIN-PMN-PT single crystals. Two sets of samples with different PT concentrations, 0.24PIN-0.49PMN-0.27PT and 0.24PIN-0.46PMN-0.30PT, were fabricated and their material properties were measured. Measured impedance spectra and simulated impedance spectra of the samples were compared to check the accuracy of the measurements.

초음파 수술기의 수술 효율성 향상을 위한 진동자 임피던스 측정에 따른 조직 분류 연구 (Classification of Organs Using Impedance of Ultrasonic Surgical Knife to improve Surgical Efficiency)

  • 김홍래;김성천;김광기;김영우
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권3호
    • /
    • pp.141-147
    • /
    • 2013
  • Ultrasonic shears is currently in wide use as an energy device for minimal invasive surgery. There is an advantage of minimizing the carbonization behavior of the tissue due to the vibrational energy transfer system of the transducer by applying a piezoelectric ceramic. However, the vibrational energy transfer system has a pitfall in energy consumption. When the movement of the forceps is interrupted by the tissue, the horn which transfers the vibrational energy of the transducer will be affected. A study was performed to recognize different tissues by measuring the impedance of the transducer of the ultrasonic shears in order to find the factor of energy consumption according to the tissue. In the first stage of the study, the voltage and current of the transducer connecting portion were measured, along with the phase changes. Subsequently, in the second stage, the impedance of the transducer was directly measured. In the final stage, using the handpiece, we grasped the tissue and observed the impedance differences appeared in the transducer To verify the proposed tissue distinguishing method, we used the handpiece to apply a force between 5N and 10N to pork while increasing the value of the impedance of the transducer from 400 ${\Omega}$.. It was found that fat and skin tissue, tendon, liver and protein all have different impedance values of 420 ${\Omega}$, 490 ${\Omega}$, 530 ${\Omega}$, and 580 ${\Omega}$, respectively. Thus, the impedance value can be used to distinguish the type of tissues grasped by the forceps. In the future study, this relationship will be used to improve the energy efficiency of ultrasonic shears.

고성능 초음파 결함탐상기를 위한 압전변환기 (Piezoelectric Transducer for Ultrasonic Flaw Detector with High Performance)

  • 정준환;전호익;김현식;강석근
    • 한국정보통신학회논문지
    • /
    • 제17권7호
    • /
    • pp.1645-1652
    • /
    • 2013
  • 본 논문에서는 비파괴검사용 고성능 결함탐상기를 위한 압전변환기를 구현하였다. 여기서는 압전변형상수와 전기기계 결합계수 등과 같은 주요 특성에 대한 설계 목표치를 먼저 정하고 유한요소해석을 이용하여 얻은 데이터를 설계 및 제작에 활용하였다. 시편을 이용한 실험 결과, 제작된 PZT 세라믹은 목표치들을 매우 잘 만족시키는 것으로 확인되었다. 이는 공진 주파수에서 매우 향상된 임피던스 특성과 초음파 발생 특성을 가지는 것으로 나타났다. 또한 새로운 압전변환기가 적용된 초음파 결함탐상기는 기존 탐상기보다 증가된 결함 검출이득을 제공한다. 따라서 새로운 결함탐상기는 초음파를 이용한 비파괴검사의 검사 신뢰성 향상에 크게 기여할 수 있을 것으로 사료된다.

Health monitoring of steel structures using impedance of thickness modes at PZT patches

  • Park, Seunghee;Yun, Chung-Bang;Roh, Yongrae;Lee, Jong-Jae
    • Smart Structures and Systems
    • /
    • 제1권4호
    • /
    • pp.339-353
    • /
    • 2005
  • This paper presents the results of a feasibility study on an impedance-based damage detection technique using thickness modes of piezoelectric (PZT) patches for steel structures. It is newly proposed to analyze the changes of the impedances of the thickness modes (frequency range > 1 MHz) at the PZT based on its resonant frequency shifts rather than those of the lateral modes (frequency range > 20 kHz) at the PZT based on its root mean square (RMS) deviations, since the former gives more significant variations in the resonant frequency shifts of the signals for identifying localities of small damages under the same measurement condition. In this paper, firstly, a numerical analysis was performed to understand the basics of the NDE technique using the impedance using an idealized 1-D electro-mechanical model consisting of a steel plate and a PZT patch. Then, experimental studies were carried out on two kinds of structural members of steel. Comparisons have been made between the results of crack detections using the thickness and lateral modes of the PZT patches.

PZT 압전 세라믹스를 사용한 2 중 모우드 초음파 변환기 (A Dual Mode Ultrasonic Transducer with a PZT Piezoelectric Seramics)

  • 김연보;노용래;남효덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 춘계학술대회 논문집
    • /
    • pp.1-4
    • /
    • 1995
  • The most of conventional ultrasonic transducers are constructed to generate either longitudinal or shear waves, but not both of them. We investigated the mechanism of dual mode transducers that generates both of the longitudinal and shear waves simultaneously with a single PZT element. The study has been aimed to find the desired cut by the examining the piezoelectric properties. Theory predicts that a mixed P/S mode transducer can be constructed using a related Z-cut of a PZT ceramics. We studied the performance of a PZT element as a function of its rotation angle so that its efficiency is optimized to excite the two waves equally strongly. The results are verified by checking the impedance variation of the element with Finite Element Methods, and chocking the wave form by pulse-echo test simulation. Based upon the theory a rotated Z-cut was prepared and a transducer were fabricated. Validity of the theory calculation is verified through the

  • PDF