• Title/Summary/Keyword: piezoelectric composite beam

Search Result 64, Processing Time 0.03 seconds

Hybrid adaptive neuro-fuzzy inference system method for energy absorption of nano-composite reinforced beam with piezoelectric face-sheets

  • Lili Xiao
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • Effects of viscoelastic foundation on vibration of curved-beam structure with clamped and simply-supported boundary conditions is investigated in this study. In doing so, a micro-scale laminate composite beam with two piezoelectric face layer with a carbon nanotube reinforces composite core is considered. The whole beam structure is laid on a viscoelastic substrate which normally occurred in actual conditions. Due to small scale of the structure non-classical elasticity theory provided more accurate results. Therefore, nonlocal strain gradient theory is employed here to capture both nano-scale effects on carbon nanotubes and microscale effects because of overall scale of the structure. Equivalent homogenous properties of the composite core is obtained using Halpin-Tsai equation. The equations of motion is derived considering energy terms of the beam and variational principle in minimizing total energy. The boundary condition is assumed to be clamped at one end and simply supported at the other end. Due to nonlinear terms in the equations of motion, semi-analytical method of general differential quadrature method is engaged to solve the equations. In addition, due to complexity in developing and solving equations of motion of arches, an artificial neural network is design and implemented to capture effects of different parameters on the inplane vibration of sandwich arches. At the end, effects of several parameters including nonlocal and gradient parameters, geometrical aspect ratios and substrate constants of the structure on the natural frequency and amplitude is derived. It is observed that increasing nonlocal and gradient parameters have contradictory effects of the amplitude and frequency of vibration of the laminate beam.

Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.545-554
    • /
    • 2020
  • The present paper explores nonlinear dynamical properties of piezo-magnetic beams based on a nonlocal refined higher-order beam formulation and piezoelectric phase effect. The piezoelectric phase increment may lead to improved vibrational behaviors for the smart beams subjected to magnetic fields and external harmonic excitation. Nonlinear governing equations of a nonlocal intelligent beam have been achieved based upon the refined beam model and a numerical provided has been introduced to calculate nonlinear vibrational curves. The present study indicates that variation in the volume fraction of piezoelectric ingredient has a substantial impact on vibrational behaviors of intelligent nanobeam under electrical and magnetic fields. Also, it can be seen that nonlinear free/forced vibrational behaviors of intelligent nanobeam have dependency on the magnitudes of induced electrical voltages, magnetic potential, stiffening elastic substrate and shear deformation.

Hybrid Vibration Control of Smart Laminated Composite Beams using Piezoelectric and Viscoelastic Material

  • Kang, Young-Kyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.37-42
    • /
    • 2003
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

Vibration Control of Composite Thin-Walled Beams with a Tip Mass Via Fuzzy Algorithm and Piezoelectric Sensor and Actuator (끝단 질량을 가진 복합재료 박판 보의 퍼지기법과 압전 감지기/작동기를 이용한 진동제어)

  • 이윤규;강호식;송오섭
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.7-14
    • /
    • 2004
  • This paper deals with adaptive fuzzy logic controller design to achieve proper dynamic response of a composite thin-walled beam with a tip mass. In order to check the effectiveness of this controller, three different types of control logic are selected and applied. The adaptive control capabilities provided by a system of piezoactuators bonded or embedded into the structure are also implemented in the system. Results show that the fuzzy logic controller is more effective than the proportional or velocity feedback controller for the vibration control of composite thin-walled beam with a tip mass.

Thermally Induced Vibration Control of Flexible Spacecraft Appendages Using by Piezoelectric Material (압전재료를 이용한 위성체 구조물의 열 진동 제어)

  • 윤일성;송오섭;김규선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.303-310
    • /
    • 2002
  • The bending vibration and thermal flutter instability of spacecraft booms modeled as circular thin-walled beams of closed cross-section and subjected to thermal radiation loading is investigated in this paper. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending-lagwise bending coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. The numerical simulations display deflection time-history as a function of the ply-angle of fibers of the composite materials, damping factor, incident angle of solar heat flux, as well as the boundary of the thermal flutter instability domain. The adaptive control are provided by a system of piezoelectric devices whose sensing and actuating functions are combined and that an bonded or embedded into the host structure.

  • PDF

Analysis of a Plate-type Piezoelectric Composite Unimorph Actuator Considering Thermal Residual Deformation (잔류 열 변형을 고려한 평판형 압전 복합재료 유니모프 작동기의 해석)

  • Goo Nam-Seo;Woo Sung-Choong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.409-419
    • /
    • 2006
  • The actuating performance of plate-type unimorph piezoelectric composite actuators having various stacking sequences was evaluated by three dimensional finite element analysis on the basis of thermal analogy model. Thermal residual stress distribution at each layer in an asymmetrically laminated plate with PZT ceramic layer and thermally induced dome height were predicted using classical laminated plate theory. Thermal analogy model was applied to a bimorph cantilever beam and LIPCA-C2 actuator in order to confirm its validity. Finite element analysis considering thermal residual deformation showed that the bending behavior of piezoelectric composite actuator subjected to electric loads was significantly different according to the stacking sequence, thickness of constituent PZT ceramic and boundary conditions. In particular, the increase of thickness of PZT ceramic led to the increase of the bending stiffness of piezoelectric composite actuator but it did not always lead to the decrease of actuation distance according to the stacking sequences of piezoelectric composite actuator. Therefore, it is noted that the actuating performance of unimorph piezoelectric composite actuator is rather affected by bending stiffness than actuation distance.

Quantitative Nondestructive Evaluation in Composite Beam Using Piezoelectric Transducers (압전 변환기를 이용한 복합재료 보의 비파괴 평가)

  • Lee, Sang-Hyoup;Choi, Young-Geun;Kim, Sang-Tae
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.31-36
    • /
    • 2007
  • A quantitative prediction method for initial crack length in a carbon/epoxy (CF/EP) composite beam using active piezoelectric transducers was established in this study. Wavelet Transform (WT)-based signal processing and identification technique in time-frequency domain was developed to facilitate the determination of damage presence and severity. Dynamic response of a CF/EP composites beam containing a continuously expanding crack, coupled with a pair of active piezoelectric disks, was examined under a narrow band excitation, and then applied with the proposed signal processing technique.

Vibration mitigation of composite laminated satellite solar panels using distributed piezoelectric patches

  • Foda, M.A.;Alsaif, K.A.
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.111-130
    • /
    • 2012
  • Satellites with flexible lightweight solar panels are sensitive to vibration that is caused by internal actuators such as reaction or momentum wheels which are used to control the attitude of the satellite. Any infinitesimal amount of unbalance in the reaction wheels rotors will impose a harmonic excitation which may interact with the solar panels structure. Therefore, quenching the solar panel's vibration is of a practical importance. In the present work, the panels are modeled as laminated composite beam using first-order shear deformation laminated plate theory which accounts for rotational inertia as well as shear deformation effects. The vibration suppression is achieved by bonding patches of piezoelectric material with suitable dimensions at selected locations along the panel. These patches are actuated by driving control voltages. The governing equations for the system are formulated and the dynamic Green's functions are used to present an exact yet simple solution for the problem. A guide lines is proposed for determining the values of the driving voltage in order to suppress the induced vibration.

On the static and dynamic stability of beams with an axial piezoelectric actuation

  • Zehetner, C.;Irschik, H.
    • Smart Structures and Systems
    • /
    • v.4 no.1
    • /
    • pp.67-84
    • /
    • 2008
  • The present contribution is concerned with the static and dynamic stability of a piezo-laminated Bernoulli-Euler beam subjected to an axial compressive force. Recently, an inconsistent derivation of the equations of motions of such a smart structural system has been presented in the literature, where it has been claimed, that an axial piezoelectric actuation can be used to control its stability. The main scope of the present paper is to show that this unfortunately is impossible. We present a consistent theory for composite beams in plane bending. Using an exact description of the kinematics of the beam axis, together with the Bernoulli-Euler assumptions, we obtain a single-layer theory capable of taking into account the effects of piezoelectric actuation and buckling. The assumption of an inextensible beam axis, which is frequently used in the literature, is discussed afterwards. We show that the cited inconsistent beam model is due to inadmissible mixing of the assumptions of an inextensible beam axis and a vanishing axial displacement, leading to the erroneous result that the stability might be enhanced by an axial piezoelectric actuation. Our analytical formulations for simply supported Bernoulli-Euler type beams are verified by means of three-dimensional finite element computations performed with ABAQUS.

Effectiveness of piezoelectric fiber reinforced composite laminate in active damping for smart structures

  • Chahar, Ravindra Singh;Ravi Kumar, B.
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.387-396
    • /
    • 2019
  • This paper deals with the effect of ply orientation and control gain on tip transverse displacement of functionally graded beam layer for both active constrained layer damping (ACLD) and passive constrained layer damping (PCLD) system. The functionally graded beam is taken as host beam with a bonded viscoelastic layer in ACLD beam system. Piezoelectric fiber reinforced composite (PFRC) laminate is a constraining layer which acts as actuator through the velocity feedback control system. A finite element model has been developed to study actuation of the smart beam system. Fractional order derivative constitutive model is used for the viscoelastic constitutive equation. The control voltage required for ACLD treatment for various symmetric ply stacking sequences is highest in case of longitudinal orientation of fibers of PFRC laminate over other ply stacking sequences. Performance of symmetric and anti-symmetric ply laminates on damping characteristics has been investigated for smart beam system using time and frequency response plots. Symmetric and anti-symmetric ply laminates significantly reduce the amplitude of the vibration over the longitudinal orientation of fibers of PFRC laminate. The analysis reveals that the PFRC laminate can be used effectively for developing very light weight smart structures.