• Title/Summary/Keyword: pier-front

Search Result 10, Processing Time 0.024 seconds

Variation of Hydraulic Characteristics around a Cylindrical Bridge Pier with Circular Collar (원환 설치에 의한 원형교각 주위의 수리특성변화)

  • Jin, Byoung-Ho;Sim, Ou-Bae;Song, Jai-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.2 s.9
    • /
    • pp.147-154
    • /
    • 2003
  • In this study, hydraulic characteristics around bridge piers were analyzed with and without collar through a hydraulic model experiment. The analysis of stage variation in front and back side of pier showed that collar installation did not function as obstacle to the stream flow. Little variation of water level between front and back sides of pier was observed before and after collar installation(0.2cm in front side and 0.1cm in back side of pier). Also, result that analyze velocity variation in front and back side of pier, lateral velocity(u) and transverse(v) before and after collar installation exhibited no alteration in the front and back side of pier. About 16.72% and 15.83% of vertical velocities(w) were reduced for the condition of y/d=0.33 in the front side of pier and y/d=0.67 in the back side of pier, respectively. This experimental results suggest that the collar installation around pier can minimize the local scouring depth by preventing the downflow that cause the pier scour.

Experimental Estimation of Shear Stresses at Pier-Front (교각전면부 하상재료의 입도분포에 따른 전단응력 산정에 관한 실험적 연구)

  • Park, Yoon Sung;Kang, Jun Ku;Yeo, Woon Kwang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.429-433
    • /
    • 2004
  • According to researchers, the influential factors of scouring are generally divided into three factors: the flow conditions, the type and position of structures, and the characteristics of bed materials. In addition, scouring is affected by the 3-dimensional turbulent boundaries, the unsteady flow, the movement of sediment in the scour-hole area, the approach flow velocity and depth, the width of bridge foundation/pier, and the particle size of bed materials. However, it is difficult to estimate the scour depth near bridge piers when all conditions are factored in at once. Therefore, for reasonably accurate estimates of scour depth, it is essential to consider sufficiently the flow force and resisting force for scour. That is, to determine the shear stress concerning the bed material distribution is needed. In this study, the experiments were performed under the condition of a steady state of flow. As a result, scouring occurred at velocity ratios of 0.476,$(V/V_c=0.476)$, and the scour depth was increased linearly as the velocity ratio increased. in addition, the average values of shear stress ratio at zero scouring depth in both rectangular and circular piers were approximately 7$(\tau_c/\tau_{approach})$ and in the case for same size bed particle material. The results of this study can be used for the fundamental material for estimating the scour depth of bed materials.

  • PDF

Crack Inspection and Mapping of Concrete Bridges using Integrated Image Processing Techniques (통합 이미지 처리 기술을 이용한 콘크리트 교량 균열 탐지 및 매핑)

  • Kim, Byunghyun;Cho, Soojin
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.18-25
    • /
    • 2021
  • In many developed countries, such as South Korea, efficiently maintaining the aging infrastructures is an important issue. Currently, inspectors visually inspect the infrastructure for maintenance needs, but this method is inefficient due to its high costs, long logistic times, and hazards to the inspectors. Thus, in this paper, a novel crack inspection approach for concrete bridges is proposed using integrated image processing techniques. The proposed approach consists of four steps: (1) training a deep learning model to automatically detect cracks on concrete bridges, (2) acquiring in-situ images using a drone, (3) generating orthomosaic images based on 3D modeling, and (4) detecting cracks on the orthmosaic image using the trained deep learning model. Cascade Mask R-CNN, a state-of-the-art instance segmentation deep learning model, was trained with 3235 crack images that included 2415 hard negative images. We selected the Tancheon overpass, located in Seoul, South Korea, as a testbed for the proposed approach, and we captured images of pier 34-37 and slab 34-36 using a commercial drone. Agisoft Metashape was utilized as a 3D model generation program to generate an orthomosaic of the captured images. We applied the proposed approach to four orthomosaic images that displayed the front, back, left, and right sides of pier 37. Using pixel-level precision referencing visual inspection of the captured images, we evaluated the trained Cascade Mask R-CNN's crack detection performance. At the coping of the front side of pier 37, the model obtained its best precision: 94.34%. It achieved an average precision of 72.93% for the orthomosaics of the four sides of the pier. The test results show that this proposed approach for crack detection can be a suitable alternative to the conventional visual inspection method.

Parameteric Analysis for Up-lifting force on Slab track of Bridge (교량상 slab궤도의 상향력 민감도분석)

  • Choi, Sung-Ki;Park, Dae-Geun;Han, Sang-Yoon;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1188-1195
    • /
    • 2007
  • The vertical forces in rail fasteners at areas of bridge transitions near the embankment and on the pier will occur due to different deformations of adjoining bridges caused by the trainloads, the settlement of supports, and the temperature gradients. The up-lifting forces is not large problem in the blast track because the elasticity of blast and rail pad buffs up-lifting effect. But, it is likely to be difficult to ensure the serviceability of the railway and the safety of the fastener in the end in that concrete slab track consist of rail, fastener, and track in a single body, delivering directly the up-lifting force to the fastener if the deck is bended because of various load cases, such as the end rotation of the overhang due to the vertical load, the bending of pier due to acceleration/braking force and temperature deviation, the settlement of embankment and pier, the temperature deviation of up-down deck and front-back pier, and the rail deformation due to wheel loads. The analysis of the rail fastener is made to verify the superposed tension forces in the rail fastener due to various load cases, temperature gradients and settlement of supports. The potential critical fasteners with the highest uplift forces are the fastener adjacent to the civil joint. The main influence factors are the geometry of the bridge such as, the beneath length of overhang, relative position of bridge bearing and fastener, deflection of bridge and the vertical spring stiffness of the fastener.

  • PDF

Linear and Nonlinear Wave Pressure Distributions Acting on Vertical Caisson of Large Size in 3-Dimensional Wave Fields (3차원파동장에 있어서 대형연직케이슨에 작용하는 선형 및 비선형의 파압분포특성에 관한 연구)

  • 김도삼;신동훈;이봉재
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.114-119
    • /
    • 2001
  • Goda formula (Goda, 1973) has been used in the determination of wave pressures acting on a large size caisson such as the pier of the cable stayed bridge at sea. Goda formula, however, is to evaluate the wave pressures acting the infinite vertical caisson of composite breakwater so that it can`t be applied to a large caisson with finite width and length because of diffraction effects. In the present study, three dimensional nonlinear frequence domain method based on perturbation method and boundary integral method is applied to the computation of the linear and nonlinear wave pressures acting on the front of a large size caisson under the variation of its width and length, and angle of incident wave. The numerical results are compared to Goda\`s ones, and then the characteristics of wave pressure distributions acting on a large size caisson are discussed.

  • PDF

Scour Countermeasure using Additional Facility in front of Bridge Pier (교각일체형 세굴방지구조물에 의한 교각세굴 방지)

  • Kim, Ung Yong;Ahn, Sang Jin;Yoon, Seok Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.424-428
    • /
    • 2004
  • 본 연구는 장기하상변동, 단면축소세굴, 국부세굴로 일반적으로 분류되는 세굴형태 중 국부세굴의 방지를 위하여 교자 전면에서 발생하는 하강류를 차단함으로써 교각 및 교각기초를 세굴로부터 보호하여 세굴심을 감소시키기 위한 실험적 인구로서, 동시에 경제성을 확보하는 것을 목적으로 한다. 교각의 기초부의 전면에 유수방향과 대응되도록 세굴방지구조물을 설치하여 세굴방지구조물의 상부 끝단에 하강류를 방지하기 위하여 차단각을 주었고 세굴방지구조물의 폭은 교자의 폭을 고려하여 설계하였다. 이러한 세굴방지구조물은 기초에 하강류 차단 방지시설을 설치하여 세굴심의 방지효과가 약 $20\~40\%$로 나타났으며 기존의 교자기초에 설치하던 매트 및 사석보호공에 비해 경제적 시공이 가능하며, 지속적인 효과를 볼 수 있었다.

  • PDF

Analysis on the Scour Reduction Effect by Controlling Downflow (하강류 제어를 통한 교각세굴 감소 효과 분석)

  • Lee, Ho Jin;Oh, Hyoun Sik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.61-67
    • /
    • 2018
  • Scour protection methods can be categorized as two types: The first is to reduce the horseshoe and wake vortices which are the main reasons for local scour. Either small cylindrical structures or separated vertical deflectors can be placed in front of the pier or the horizontal deflector (or collar) can be attached to the pier like the spoiler to reduce the dynamics of vortical structures. The second is to employ the protection layer to keep the bed material in place, which is a common method with a merit of immediate effect by using block mat or tetrapod. This study examined the effect of scour reduction using the former method. The relationship between the reflector interval and reduction of scour was not clear. It is assumed that the width of the reflector is somewhat correlated with the reduction of the scour. As the KC numbers increases, the Effect of Scour reduction rate is shown to decrease. Also, Scour reduction rate showed a rapid change at $U_R=25$ or KC = 8.

A Study on the Change of Current in the Vicinity of Mokpo Harbor and Its Impact on Ship Operation due to the Discharge through Yongsan River Estuary Weir and Yongam-Kumho Sea Dike (영산강 하구둑 및 영암-금호방조제의 방류에 의한 목포항 주변수역의 유동변화 및 선박운용에 미치는 영향에 관한 연구)

  • 정대득;이중우;국승기
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.133-146
    • /
    • 1999
  • Mokpo coastal area is connected to the adjacent a long river and two large basins. It is essential for port planning coastal zone management and environmental impact study to analyze the data related to the ship operation and variation of current and water quality due to the development of water area including dredging reclamation and estuary barrage. The Yongsan river estuary weir and Yongam-Kumho basins discharge much of water through water gates for the purpose of flood control and prohibit salt intrusion at the inland fresh water area. To meet this purpose discharge through the gates have been done at the period of maximum water level difference between inner river and sea level. This discharged water may cause the changes of current pattern and other environmental influences in the vicinity and inner area of semi-closed Mokpo harbor. In this study ADI method is applied to the governing equation for the analysis of the changes on current pattern due to discharged water. As the results of this study it is known that the discharging operation causes many changes including the increase of current velocity at the front water area at piers approaching passage and anchorages. Discussion made on the point of problems such as restricted maneuverability and the safety of morred vessels at pier and anchorage. To minimize this influence the linked gate operation discharging warning system and laternative mooring system are recommended.

  • PDF

Considerations of Environmental Factors Affecting the Detection of Underwater Acoustic Signals in the Continental Regions of the East Coast Sea of Korea

  • Na, Young-Nam;Kim, Young-Gyu;Kim, Young-Sun;Park, Joung-Soo;Kim, Eui-Hyung;Chae, Jin-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2E
    • /
    • pp.30-45
    • /
    • 2001
  • This study considers the environmental factors affecting propagation loss and sonar performance in the continental regions of the East Coast Sea of Korea. Water mass distributions appear to change dramatically in a few weeks. Simple calculation with the case when the NKCW (North Korean Cold Water) develops shows that the difference in propagation loss may reach in the worst up to 10dB over range 5km. Another factor, an eddy, has typical dimensions of 100-200km in diameter and 150-200m in thickness. Employing a typical eddy and assuming frequency to be 100Hz, its effects on propagation loss appear to make lower the normal formation of convergence zones with which sonars are possible to detect long-range targets. The change of convergence zones may result in 10dB difference in received signals in a given depth. Thermal fronts also appear to be critical restrictions to operating sonars in shallow waters. Assuming frequency to be 200Hz, thermal fronts can make 10dB difference in propagation loss between with and without them over range 20km. An observation made in one site in the East Coast Sea of Korea reveals that internal waves may appear in near-inertial period and their spectra may exist in periods 2-17min. A simulation employing simple internal wave packets gives that they break convergence zones on the bottom, causing the performance degradation of FOM as much as 4dB in frequency 1kHz. An acoustic experiment, using fixed source and receiver at the same site, shows that the received signals fluctuate tremendously with time reaching up to 6.5dB in frequencies 1kHz or less. Ambient noises give negative effects directly on sonar performance. Measurements at some sites in the East Coast Sea of Korea suggest that the noise levels greatly fluctuate with time, for example noon and early morning, mainly due to ship traffics. The average difference in a day may reach 10dB in frequency 200Hz. Another experiment using an array of hydrophones gives that the spectrum levels of ambient noises are highly directional, their difference being as large as 10dB with vertical or horizontal angles. This fact strongly implies that we should obtain in-situ information of noise levels to estimate reasonable sonar performance. As one of non-stationary noise sources, an eel may give serious problems to sonar operation on or under the sea bottoms. Observed eel noises in a pier of water depth 14m appear to have duration time of about 0.4 seconds and frequency ranges of 0.2-2.8kHz. The 'song'of an eel increases ambient noise levels to average 2.16dB in the frequencies concerned, being large enough to degrade detection performance of the sonars on or below sediments. An experiment using hydrophones in water and sediment gives that sensitivity drops of 3-4dB are expected for the hydrophones laid in sediment at frequencies of 0.5-1.5kHz. The SNR difference between in water and in sediment, however, shows large fluctuations rather than stable patterns with the source-receiver ranges.

  • PDF