• Title/Summary/Keyword: pier strength.

Search Result 109, Processing Time 0.029 seconds

The Behavior of Large Diameter Rock Socketed Piles (암반 정착 대구경 피어기초의 거동특성에 관한 연구)

  • Kim, Tae-Hyun;Kim, Chan-Kook;Hwang, Eui-Seok;Lee, Bong-Real;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1245-1250
    • /
    • 2006
  • The rapid growth of the economy recently gas led to increasing social needs for large scaled structures, such as high-rise buildings and long span bridges. In building these large-scaled structures the trend has been to construct foundations beating on or in rock masses in order to ensure stability and serviceability of the structure under several significant loads. However. when designing the drilled shaft foundation socketed in rock masses in Korea, the bearing capacity for the pier used to be determined by using the empirical expression, which depends on the compressive strength of the rock, or presumable bearing capacity recommended on foreign references or manuals. In this study, numerical analyses are used to trace rock-socketed pile behavior and are made alike with pile load test result in field. The result of this numerical analyses study have shown that following factors have a significant influence on the load capacity and settlement of the pier. Significant influence first factor of the geometry of the socket as defined by the length to diameter ratio. Second factor of the modulus of the rock both around the socket and below the base. third factor of the condition of the end of the pier with respect to the removal of drill cuttings and other loose material from the bottom of the socket.

  • PDF

Strut-Tie Model Evaluation of Haunch Effects in Concrete Structures (스트럿-타이 모델에 의한 콘크리트 구조물에서의 헌치부 영향 평가)

  • Yun, Young-Mook;Kim, Byung-Hun;Lee, Won-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.183-196
    • /
    • 2003
  • This paper evaluates the effects of haunches and the characteristic differences of haunch design regulations through design of pier and box structures with/without haunches. The design of the pier and box structures was conducted by using the linear elastic plane stress finite element analysis, the DIN 1045 and ACI 318-99 codes, the suggested experimental design equations, and the strut-tie model approach. To prove the validity of design results obtained by the strut-tie model approach, the ultimate strength of two haunched reinforced concrete beams tested to failure was evaluated by using the approach. According to the comparison and evaluation of the design results, it is concluded that the design results of haunched reinforced concrete structures by using conventional and design codes need to be complemented with those by using the strut-tie model approach that reflected the effects of haunches in design comparatively well through the actions of arch and direct transfer of applied loads.

Stress Reducing Method in the Connection Area with Pier due to the Torsion of the Girder of Fish-bone Type Bridge (경골형 교량거더의 비틀림에 의한 말뚝연결부 응력저감기법)

  • Kim, Jae-Heong;Yun, Kyung-Min;Yoon, Ki-Yong;Lee, Chin-Ok;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2399-2405
    • /
    • 2014
  • A fish-bone type bridge is vulnerable to the torsional behavior due to the single girder system with planar zigzag conformation. The fixed connecting area between the girder and pier is the special weak point because the torsional load creates excessive stress concentration. Therefore, the method to reduce the stress concentration is required. In this study, the reduction efficiency of various reinforcing types to reduce the excessive stress occurring at the connecting area is evaluated by using numerical analyses.

Load carrying capacity of deteriorated reinforced concrete columns

  • Tapan, Mucip;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.6 no.6
    • /
    • pp.473-490
    • /
    • 2009
  • This paper presents a new methodology to evaluate the load carrying capacity of deteriorated non-slender concrete bridge pier columns by construction of the full P-M interaction diagrams. The proposed method incorporates the actual material properties of deteriorated columns, and accounts for amount of corrosion and exposed corroded bar length, concrete loss, loss of concrete confinement and strength due to stirrup deterioration, bond failure, and type of stresses in the corroded reinforcement. The developed structural model and the damaged material models are integrated in a spreadsheet for evaluating the load carrying capacity for different deterioration stages and/or corrosion amounts. Available experimental and analytical data for the effects of corrosion on short columns subject to axial loads combined with moments (eccentricity induced) are used to verify the accuracy of proposed model. It was observed that, for the limited available experimental data, the proposed model is conservative and is capable of predicting the load carrying capacity of deteriorated reinforced concrete columns with reasonable accuracy. The proposed analytical method will improve the understanding of effects of deterioration on structural members, and allow engineers to qualitatively assess load carrying capacity of deteriorated reinforced concrete bridge pier columns.

Seismic performance assessment of R.C. bridge piers designed with the Algerian seismic bridges regulation

  • Kehila, Fouad;Kibboua, Abderrahmane;Bechtoula, Hakim;Remki, Mustapha
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.701-713
    • /
    • 2018
  • Many bridges in Algeria were constructed without taking into account the seismic effect in the design. The implantation of a new regulation code RPOA-2008 requires a higher reinforcement ratio than with the seismic coefficient method, which is a common feature of the existing bridges. For better perception of the performance bridge piers and evaluation of the risk assessment of existing bridges, fragility analysis is an interesting tool to assess the vulnerability study of these structures. This paper presents a comparative performance of bridge piers designed with the seismic coefficient method and the new RPOA-2008. The performances of the designed bridge piers are assessed using thirty ground motion records and incremental dynamic analysis. Fragility curves for the bridge piers are plotted using probabilistic seismic demand model to perform the seismic vulnerability analysis. The impact of changing the reinforcement strength on the seismic behavior of the designed bridge piers is checked by fragility analysis. The fragility results reveal that the probability of damage with the RPOA-2008 is less and perform well comparing to the conventional design pier.

Study on Hydration Heat Analysis of Pier Foundation-Column Using Low Heat Concrete (저발열 콘크리트를 사용한 교각 기초-기둥의 수화열 해석에 관한 연구)

  • Jeon, Joong-Kyu;Kim, Sun-Gil;Jeon, Chan-Ki;Kim, Ki-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.217-224
    • /
    • 2014
  • This study carried out to evaluate the hydration heat analysis and fundamental characteristics such as air content, slump and compressive strength for field application of low heat concrete with premixed cement. The results of experiment show that low heat concrete with premixed cement have sufficient performances on the workability and compressive strength. In addition, hydration heat analysis shows that low heat concrete with premixed cement make sure of target thermal cracking index. Therefore, it is desirable to apply the low heat concrete with premixed cement on pier foundation-column.

An Analytical Study on Influence of Longitudinal Stiffeners on Seismic Performance of Circular Steel Columns (수직보강재가 원형강기둥의 이력거동에 미치는 영향에 대한 해석적 연구)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.1 s.23
    • /
    • pp.63-70
    • /
    • 2007
  • To improve the land use of urban, Construction of the circular steel column is required recently. The circular steel columns have a advantage for improving a load carrying rapacity as wall as reducing a effective section area. However, the circular steel columns under service load, such as earthquake, shows a tendency to cause local buckling and large deformation. To prevent these phenomena, use of longitudinal stiffeners is considered. The application of longitudinal stiffeners at the circular steel columns is expected to increase a load carrying capacity, buckling strength and seismic performance of circular steel column. However, increasing the loading carving rapacity of buckling which constructed the longitudinal stiffeners, was not investigated yet. Therefore it needs study on effect of longitudinal stiffener in pipe-section steel pier. In this study, the load rallying capacity of buckling of steel pier was investigated by using elastic-plastic finite element analysis considered geometrical and material non-linearity. Also, this study investigated the effect of longitudinal stiffeners on loading carrying capacity of buckling and the relationship between width and thickness of longitudinal stiffeners. And also, a Influence of longitudinal stiffeners on seismic performance of circular steel columns was investigated by numerical analysis

  • PDF

Effects of Design Parameters on Structural Performance of Precast Piers with Bonded Prestressing Steels (부착 긴장재를 가진 조립식 교각 설계변수의 구조성능에 미치는 영향)

  • Shim, Chang-Su;Yoon, Jae-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.15-26
    • /
    • 2010
  • Quasi-static tests were conducted to evaluate structural performance of precast piers prestressed by bonded prestressing steels. Combinations of prestressing bars and normal reinforcing bars, embedded steel tubes and prestressing strands were used as continuous steels crossing the joints of a precast pier. Main design parameters were steel ratio, magnitude of prestress force, and section details. Flexural strength and energy dissipation capacity of precast columns with higher steel ratio showed better performance due to continuous steels after opening of the joints. Precast piers with embedded members showed stable behavior after reaching maximum loads resulting in higher displacement ductility and energy dissipation capacity increased as the introduced prestress increased. Self-centering behavior at early stages and stress increase of confining reinforcements were observed from highly prestressed columns. Combination of prestressing steels and normal reinforcing bars should be used in design to prevent rapid strength degradation after reaching the maximum load.

Quasi-Static Test for Seismic Performance of Circular R.C. Bridge Piers Before and After Retrofitting (유리섬유 보강 원형 철근콘크리트 교각의 내진성능에 관한 준정적 실험연구)

  • 정영수;이강균;한기훈;이대형
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.107-118
    • /
    • 1999
  • 10 RC bridge piers have been made on a 1/3.4 scale model, and six piers of them were retrofitted with glassfiber. The have been tested in the quasi-static cyclic load so as to investigate their seismic enhancement before and after retrofitting with glassfibers. The objective of this experimental study is to investigate how to strength the ductility of reinforced concrete bridge piers which have been nonseismically designed and constructed in Korea before 1992. Important test parameters are axial load, load pattern, retrofit type. Glassfiber sheets were used for retrofitting in the plastic hinge region of concrete piers. The nonlinear behavior of bridge columns have been evaluated through their yield and ultimate strength, energy dissipation, displacement ductility and load-deflection characteristics under quasi-static cyclic loads. It can be concluded from the test that concrete piers strengthened with glassfibers have been enhanced for their ductile behavior by approximate 50%.

Investigation of the seismic performance of precast segmental tall bridge columns

  • Bu, Z.Y.;Ding, Y.;Chen, J.;Li, Y.S.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.287-309
    • /
    • 2012
  • Precast segmental bridge columns (PSBC) are alternatives for monolithic cast-in-situ concrete columns in bridge substructures, with fast construction speed and structural durability. The analytical tool for common use is demonstrated applicable for seismic performance prediction of PSBCs through experiment conducted earlier. Then the analytical program was used for parameter optimization of PSBC configurations under reversal cyclic loading. Shear strength by pushover analysis was compared with theoretical prediction. Moreover, seismic response of PSBC with energy dissipation (ED) bars was compared with its no ED bar counterpart under three history ground acceleration records. The investigation shows that appropriate ED bar and post-tensioned tendon arrangement is important for higher lateral bearing capacity and good ductility performance of PSBCs.