• Title/Summary/Keyword: pickling

Search Result 129, Processing Time 0.023 seconds

Changes in Protease and Formonitrogen of Salted Fish and Shellfish (1) (젓갈 성숙과정(成熟過程)에 있어 Protease 및 Formonitrogen의 변화(變化)에 관(關)한 연구(硏究)(1))

  • Suh, Myung-Jah
    • Journal of Nutrition and Health
    • /
    • v.6 no.2
    • /
    • pp.45-56
    • /
    • 1973
  • Salted fish and shellfish have been widely used in Korea from olden times as side-dishes, although the processes and methods of pickling have varied depending on localities. The common raw materials for these subsidiary food articles include anchovy, shrimp, yellow corvina, oysters, octopus, top-shell, shellfish, pollack roe and pollack intestines. It must be pointed out here, however, that the salted stuffs now marketed locally are highly unscientific and unsanitary in the way they are processed and sold, and this has prompted this writer to undertake a study on these native food articles. The following findings have been obtained from this study on the changes in Formonitrogen and Protease Activity, effected by the density of salt and the degree of storing temperature, of the pickles of cedfish gills, codfish intestines, pollack intestines, shellfish, oysters, cuttle fish and octopus. 1) Codfish Gills The Protease Activity of the pickled codfish gills was greater in the groups of lesser doses of salt and higher degrees of storing temperature. The same was true in the case of Formonifrogen, too. The Formonitrogen of the pickled codfish gills was larger in the groups of lesser salt and higher teimperature. 2) Codfish Intestines The amount of Formonitrogen of the pickled codfiah intestines became greater, as time went by, in the groups of lesser salt than those of larger doses of salt, with the speed of its formation getting faster as the storing temperature rose from $5^{\circ}C$ to $15^{\circ}C$ and $30^{\circ}C$. The Protease Activity was also greater in the groups of lesser salt and higher temperature. The group, stored at 10% salt and $30^{\circ}C$, rotted in five days. 3) Pollack Intestines The amount of Formonitrogen of the pickled pollack intestines was greater in the groups of lesser amount of salt and higher degrees of storing temperature. The Protease Activity of the pickled pollack intestines began decreasing from the 11th day after the pickling in the groups stored at colmparatively high degrees of temperature$(15^{\circ}C-30^{\circ}C)$, while that of the group stored at $5^{\circ}C$ kept rising. The effects of the amount of salt were little. The group stored at 15% salt and $30^{\circ}C$ started rotting on the 13th day while that stored at $30^{\circ}C$ decayed on the 7th day. The group stored at 20% salt and $30^{\circ}C$ rotted on the 9th day. 4) Oysters The amount of Formonitrogen of the pickled oysters became greater as the storing temperature rose and the doses of salt were lowered. The Protease Activity was not affected at any measurable degree by the density of salt in the group stored at $5^{\circ}C$, but became greater as the storing temperature rose to $15^{\circ}C$ and $30^{\circ}C$. The group stored at 10% salt and $30^{\circ}C$ rotted on the 5th day while that stored at 20% salt and $30^{\circ}C$ on the 13th day. 5) Shellfish The amount of Formonitrogen of the pickled shellfish became greater, as time went by, it the groups of lower consistency of salt than the groups of higher density of salt, although the decay of the former groups was faster than the latter groups. The density of salt best fitted for the pickling appeared to be about 20% with the storing temperature to be $15^{\circ}C$, at which the pickled stuff became most tasty on the 7th day. The oysters stored in three groups at $5^{\circ}C$, $15^{\circ}C$ and $30^{\circ}C$ respectively showed the greatest Protease Activity alike at 0% of salt, but the activity declined as the density of salt increased. The Protease Activity of each group rose for the first 11 days after the pickling, but began declining from the 13th day onward, with the groups of higher temperature retaining higher Protease Activity than the groups of lower temperature. 6) Cuttlefish Both the amount of Formonitrogen and the degree of Protease Activity of the pickled cuttlefish were greater in the groups of lower density of salt and higher degree of storing temperature. The oysters pickled at 10% salt and $15^{\circ}C$ degenerated on the 13th day while that of 10% salt and $30^{\circ}C$ deteriorated on the 7th day. 7) Octopus Both the Formonitrogen and the Protease Activity of the pickled octopus were greater in the groups of lower density of salt, but as time went by, the Protease Activity in all groups dwindled after a climbing. In general, the Formonitrogen and the Protease Activity of the pickled oysters became greater as the storing temperature got higher. One group stored at 10% salt and $15^{\circ}C$ rotted in 13days while another group stored at $30^{\circ}C$ decayed in 7 days.

  • PDF

Fish Fermentation Technology (수산발효기술)

  • Lee Cherl-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.645-654
    • /
    • 1989
  • The historical background of fish fermentation in Asia and other regions of the world is reviewed. The classification of fermented fish products in different regions is attempted with respect to the technology involved. The fermented fish products are largely divided into three groups; (1) high-salt, (2) low-salt, and (3) non-salt fermented. High-salt fermented products contain over 20% of salt and are represented by fish sauce, cured fish and fish paste. Low-salt fermented products contain 6-18% salt and are subdivided into lactic fermented products with added carbohydrate and acid pickling associated with low temperature. Non-salt fermented products are represented by the solid state bonito fermentation and some alkaline fermentation of flat fishes. The local names of the products in different regions are compared and classified accordingly. The microbial and biochemical changes during fish fermentation are considered in relation to the quality of the products, and their wholesomeness is reviewed.

  • PDF

Study on iron removal by S-HGMS from tungsten tailings

  • Jin, Jian-jiang;Li, Su-qin;Zhao, Xin;Guo, Peng-hui;Li, Fang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.17-20
    • /
    • 2020
  • Comprehensive utilization of tungsten tailings resources not only solves environmental problems but also creates huge economic benefits. The high content of iron impurity in tungsten tailings will have adverse effect on the downstream comprehensive utilization, whether flotation or pickling. In this paper, the Superconducting High Gradient Magnetic Separation(S-HGMS) is used to remove of Fe impurities from tungsten tailings. The optimal experimental parameters are as follows: background magnetic induction intensity is 3.0T, slurry flow velocity is 500ml/min. The Fe removal rate of Fe was 68.8% and the recovery rate was 59.53%.

The advanced welding technology for high Strength steel adding Mn (Mn 첨가 고장력강 용접성 향상기술)

  • LEE H. S.;SHIM W. B.;LEE K. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.240-248
    • /
    • 2004
  • Recently, the customer's demands for automotive steel sheet have been diversified and sterned more. Therefore, as the tendency of auto industry light-weight, one among these requirements is the trend for high strength together with the thinness of automotive steel sheet. Because Mn added essentially in producing high strength steel sheet is bonded strongly with oxygen, the Fine oxidation layer was created at the welding face after the flash butt welding operated in entry section of pickling line. Thereby it was caused the crack or breakage of welding part in process of cold rolling. At this research, in order to protect the contact Mn with oxygen in atomosphere it was considered to fire oxygen with LNG and the related researches have been gone forward with the find out concrete and to apply them to operation.

  • PDF

Recovery of Pure Electrolytic Iron from Wasted Hydrochloric Pickling Solution of Steel (철강의 염산산세 폐액으로부터 전해철의 제조에 관한 연구)

  • 김기호;권오익;홍성규
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.1
    • /
    • pp.23-30
    • /
    • 1993
  • Iron component in wasted hydrochloric etching solutions from steel works were recovered by electrolysis. The electric conductances of the solutions, as the function of the bath temperature and the ferrousion concen-tration, were measured and the result of the original solution was K=(0.0012+0.0005$\times$10-3T-0.1160$\times$10-6T2)$\times$102S.m-1(T in $^{\circ}C$) The current efficiency was better for the bath using a soluble steel plate anode than for the bath using an insoluble platinized titanium one. Densed electrolytic iron having the purity of higher than 99.99% was ob-tained at the electrolysis conditions of the cathodic current density of 15A/dm2, the bath temperature of $70\pm$$5^{\circ}C$ and the ferrous ion concentration of about 100g/l. The morphologies of the deposited iron were observed by SEM.

  • PDF

Fabrication of Chromium-based Double Layered Deposit (크롬계 이중도금층 제조 및 특성평가)

  • Park, Sang-Eon;Kim, Dong-Su;Kim, Man;Jang, Do-Yeon;Gwon, Sik-Cheol
    • 연구논문집
    • /
    • s.31
    • /
    • pp.127-133
    • /
    • 2001
  • In chromium electrodeposition, crack is inevitably accompanied by chromium layer. Behavior of crack formation and crack density were different from the plating conditions such as current density, temperature, waveform of applied current and so on. And cracks have an influence on the corrosion resistance of chromium deposit, because corrosion occurs through the network of cracks between deposit and substrate. Therefore, many researches have been achieved in order to remove the cracks in chromium deposit. Formation of double layers, Cr/Cr and Ni/Cr were investigated to increase corrosion resistance of chromium deposit in this study. As pretreatment prior to outer chromium coating, acid pickling and current control method were examined. Cracks in cross-section of each sample were observed with SEM and CASS(Copper modified acetic acid salt spray) test was performed to evaluate corrosion resistance. It was found that corrosion resistance of Cr/Cr and Ni/Cr double layers were superior to Cr or Ni single layer from the results of CASS test.

  • PDF

Residual stresses on plasma sprayed zirconia coatings (플라즈마 용사법에 의한 지르코니아 코팅에서의 잔류응력에 대한 연구)

  • 류지호;강춘식
    • Journal of Welding and Joining
    • /
    • v.7 no.4
    • /
    • pp.46-55
    • /
    • 1989
  • Zirconia coatings are performed by the plasma spraying on the substrate of Al-Si alloy. In case of plasma sprayed ceramic coatings, it is important to control properly residual stress occurred during cooling process. Residual stress in coating layer varies with sprayed conditions and is influenced greatly by the coating layer thickness. Surface residual stress due to coating layer thickness is measured by X-ray diffraction method and the residual stress in coating layer is estimated by the deflection of coating layer when the restraint force in substrate was removed. When zirconia was coated on the substrate, tensile residual stress remains on zirconia coated surface layer. The tensile stress is increased to 0.35mm thickness and after 0.45mm thickness it is decreased abrouptly. A thick bond and composite coating reduce the zirconia surface stress and composite coating controls effectively the thick zirconia surface stress.

  • PDF

Ferrous Chloride Pickling Bath A new process for pre-treatment of metals

  • Ericson, U.H.;Ericson, H.A.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.219-223
    • /
    • 1999
  • A new additive for semi-brightness finish in nickel electroplating, having a quarternary ammonium salt structure, has been developed in this study. The effectiveness of the new additive was tested in laboratory-scale eletroplating tests as well as in a full-scale factory plating line. An examination of the plated surface showed that the new additive is as good as the one produced by the most commonly used additive in the nickel plating industry. The plated surface was examined by SEM, EPMA, and Reflectance Spectroscopy, and was found to be compatible to the one obtained with commercial additives. The new additive has a shelf life comparable with those of other commercially available additives. The additive developed in this study has an excellent potential to be used commercially.

  • PDF

Quality and Antioxidant Activity Characteristics During Storage of Tea Leaf Pickles with Different Vinegar Contents (식초 함량을 달리한 차잎 피클의 저장중 품질 및 항산화특성)

  • Park, Bo-Ram;Park, Jin-Ju;Hwang, In-Guk;Han, Hye-Min;Shin, Malshick;Shin, Dong-Sun;Yoo, Seon-Mi
    • Korean journal of food and cookery science
    • /
    • v.30 no.4
    • /
    • pp.402-411
    • /
    • 2014
  • This study investigated the quality characteristics of tea leaf pickle with different pickling solutions. Blanched tea leaf at $100^{\circ}C$ for 3 min was pickled using pickling solutions (mixture of water, soy sauce, sugar and vinegar) with different vinegar contents (10, 20, 30 and 40%, v/v). and stored for 30 days at $4^{\circ}C$. The color values, hardness, pH, total acidity, sensory evaluation, antioxidant compound contents, DPPH radical scavenging and ABTS radical scavenging of the pickled tea leaf during storage were determined. The pH of tea leaf pickles decreased consistently and total acidity was increased during storage. The L-value of tea leaf pickles was decreased and the a-value was increased significantly during storage; however, the b-value had no significant changes (p<0.05). The hardness of the tea leaf pickles decreased consistently during storage. On the sensory evaluation, the highest score of overall acceptance was presented to the tea leaf pickle using a 20% vinegar pickling solution stored for 20 days. The antioxidant compound contents and antioxidant activity consistently decreased during storage; further, the experimental group of vinegar with 20% content tea leaf pickle displayed the lowest antioxidant compound content and antioxidant activity.

Heavy Metal Removal Efficiency in Accordance with Changes in Acid Concentrations in a Micro-nano Bubble Soil Washing System and Pickling Process (마이크로나노버블 토양세척시스템 및 산세척 복합공정의 산 농도변화에 따른 중금속 제거효율에 관한 연구)

  • Jung, Jin-Hee;Choi, Ho-Eun;Jung, Byung-Gil;Sung, Nak-Chang;Yi, Gi-Chul;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.26 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • This study was aimed at determining the changes in heavy metal removal efficiency at different acid concentrations in a micro-nanobubble soil washing system and pickling process that is used to dispose of heavy metals. For this purpose, the initial and final heavy metal concentrations were measured to calculate the heavy metal removal efficiency 5, 10, 20, 30, 60, and 120 min into the experiment. Soil contaminated by heavy metals and extracted from 0~15 cm below the surface of a vehicle junkyard in the city of U was used in the experiment. The extracted soil was air-dried for 24 h, after which a No. 10 (2 mm) was used as a filter to remove large particles and other substances from the soil as well as to even out the samples. As for the operating conditions, the air inflow rate in the micro-nano bubble soil washing system was fixed at 2 L/min,; with the concentration of hydrogen peroxide being adjusted to 5%, 10%, or 15%. The treatment lasted 120 min. The results showed that when the concentration of hydrogen peroxide was 5%, the efficiency of Zn removal was 27.4%, whereas those of Ni and Pb were 28.7% and 22.8%, respectively. When the concentration of hydrogen peroxide was 10%, the efficiency of Zn removal was 38.7%, whereas those of Ni and Pb were 42.6% and 28.6%, respectively. When the concentration of hydrogen peroxide was 15%, the efficiency of Zn removal was 49.7%, whereas those of Ni and Pb were 57.1% and 42.6%, respectively. Therefore, the efficiency of removal of all three heavy metals was the highest when the hydrogen peroxide concentration was 15%.