• Title/Summary/Keyword: pick-up type pulse crop harvester

Search Result 4, Processing Time 0.015 seconds

Design and Construction of a Pick-up Type Pulse Crop Harvester

  • Lee, Ki Yong;Yoo, Soonam;Han, Byung Hee;Choi, Yong;Choi, Il Su
    • Journal of Biosystems Engineering
    • /
    • v.42 no.1
    • /
    • pp.12-22
    • /
    • 2017
  • Purpose: This aim of this study was to develop a pick-up type pulse crop harvester for harvesting cut and dried pulse crop. Methods: The pick-up type pulse crop harvester was designed and constructed. Its specifications and operating performance were investigated. Results: Compared with conventional bean harvesters, the pick-up type pulse crop harvester adopted seven rows of chains with tines to pick-up the cut and dried pulse crop on a flat or ridged field, two transverse threshing drums with steel wire teeth to reduce the threshing speed, and a tilt plate and plastic bucket elevator for conveying clean grain to reduce damage. The threshing speed and the oscillating frequency of the separating and cleaning parts according to crop type and condition could be varied easily to efficiently use engine power and to improve harvesting performance. The harvester showed forward speed ranges of 0 ~ 1.5 m/s during harvesting operation, and 0 ~ 2.5 m/s during road travelling. The pick-up width of the harvester was about 1 m. Conclusions: The pick-up type self-propelled 51.5 kW harvester was designed and constructed to harvest cut and dried pulse crop. The effective field capacity of the harvester was predicted as above 40 a/h.

Prediction of Labor Requirement and Cost of Pick-up Type Pulse Crop Harvester for Soybean and Red Bean Harvesting

  • Yoo, Soonam;Chang, Heesoo
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.283-289
    • /
    • 2014
  • Purpose: This study was carried out to evaluate the labor requirement and the cost-reducing effects of the pick-up type pulse crop harvester compared with those of conventional harvesting for soybeans and red beans. Methods: The labor requirement and the cost to gather, thresh, and clean for conventional harvesting operations were surveyed; those for the pick-up type pulse crop harvester were estimated for soybeans and red beans. The annual capacity of the harvester and the break-even area of the two harvesting methods were also estimated. Results: For soybean harvesting, the labor requirement of 0.57 hour-persons/10 a for the pick-up type pulse crop harvester reflects a 91.9% reduction in the labor requirement of 7.00 hour-persons/10 a for conventional harvesting. Machinery costs of 51,300 won/10 a for the harvester were estimated for an annual harvesting area of 52.5 ha/year, representing a reduction of 33.3% from the 78,700 won/10 a cost of conventional harvesting. A break-even area of 28.4 ha was estimated for the two harvestings. For red bean harvesting, the labor requirement of 0.57 hour-persons/10 a for the harvester reflects a 92.6% reduction in the labor requirement of 7.66 hour-persons/10 a for conventional harvesting. For an annual harvesting area of 52.5 ha/year, annual capacity of 52.5 ha/year and machinery costs of 51,700 won/10 a were estimated for the harvester, reflecting a reduction of 44.7% in the cost of 93,500 won/10 a for conventional harvesting. A break-even area of 23.1 ha was estimated for the two harvestings. A governmental subsidy for purchasing the harvester could contribute to reducing the break-even area and harvesting costs. Conclusions: The pick-up type pulse crop harvester for soybean and red bean harvesting could reduce the labor requirement and costs of conventional harvesting, and a governmental subsidy for purchasing the harvester will improve the economics of the harvester for efficient mechanical harvesting.

Harvesting performance of an experimental pick-up type pulse crop harvester for green kernel black bean

  • Choi, Yeong Soo;Han, Byung Hee;Yoo, Soo Nam
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.1
    • /
    • pp.114-122
    • /
    • 2017
  • An experimental pick-up type pulse crop harvester was built and its harvesting performance for green kernel black bean was evaluated. Field bean loss and harvested bean quality of the harvester were analyzed according to engine speeds of 2,000; 2,400; 2,800; 3,000; and 3,200 rpm, and travel speeds of 0.6; 1.0; and 1.4 m/s. Operating conditions and field capacity of the harvester for proper harvesting were estimated. The harvester had an optimum performance at a grain moisture content of 13.4%, an engine speed of 3,000 rpm, and a travel speed of 1.2 - 1.3 m/s. Subsequently, the picking-up, discharging, and total bean loss ratios were found to be 1.6, 1.3, and 2.9%, respectively. The whole bean, damaged bean, unthreshed bean, and foreign material ratios were determined to be 96.2, 1.0, 0.1, and 0.3%, respectively. Results showed that the harvester had lower bean loss and higher harvested bean quality than those of imported bean combines. The harvester could harvest 2 rows with a crop spacing of an approximately 1.4 m. Its optimum travel speed was estimated to be approximately 1.2 m/s when harvesting performance was taken into account using such variables as field bean loss and harvested bean quality for green kernel black bean. Effective field capacity of the harvester was estimated at approximately 40 a/h.

Harvesting Performance of the Experimental Pick-up Type Pulse Crop Harvester for Sprout Bean (시험용 수집형 두류 수확기의 나물 콩 수확성능)

  • Choi, Yeong-Soo;Yoo, Soo-Nam
    • Journal of agriculture & life science
    • /
    • v.51 no.2
    • /
    • pp.165-173
    • /
    • 2017
  • To evaluate performance of the experimental pick-up type pulse crop harvester for harvesting sprout bean, its pick-up and discharging grain loss ratios, grain quality such as whole grain ratio, damaged grain ratio, unthreshed grain, and foreign material ratio in grain tank, germination rate of threshed grain, and theoretical field capacity of the harvester were analyzed according to engine speeds of 2000, 2400 and 2800 rpm and harvesting speeds of 0.6, 1.0 and 1.4 m/s. It is considered that the harvester showed optimum performance at the engine speed of 2800 rpm and the harvesting speed of 1.0 m/s, and then average pick-up grain loss ratio of 2.7%, discharging grain loss ratio of 0.5%, whole grain ratio of 99.3%, damaged grain ratio of 0.2%, unthreshed grain ratio of 0.0%, foreign material ratio of 0.2%, and germination rate at 8 days after seeding of 72.8% were shown. It is considered that the harvester has lower grain loss and higher grain quality than the imported bean combines. And also as it could harvest 3 rows of cut and dried sprout bean crop width of which was about 2 m, its effective field capacity was estimated for about 50 a/h.