• Title/Summary/Keyword: phytoplankton cultivation system

Search Result 4, Processing Time 0.019 seconds

Removal of Nutrients from Stream Water Polluted with Nonpoint Source Pollution by Cultivation of Phytoplankton. (비점오염원으로부터 오염된 하천수에서 식물플랑크톤 배양을 이용한 영양염류 제거)

  • Cho, Ahn-Na;Jung, Da-Woon;Jung, You-Jung;Choi, Seung-Ik;Ahn, Tae-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • A phytoplankton cultivation system was installed and operated for removal of nutrients from stream water polluted by nonpoint source pollution. The system was a continuous-flow culture comprising a phytoplankton tank that received inflow from a storage reservoir. When the system was operated as a batch culture for the purpose of determining hydraulic retention time (HRT), the proper HRT value was three days, and the removal rate of TP and TN averaged 70% and 44%, respectively. When the system was operated with the continuous flow from a stream for 45 days, 53.9% of TP and 53.1% of TN were removed as sludge. Due to active growth of phytoplankton, pH and dissolved oxygen in the phytoplankton tank were extremely high, reaching 10.8 and 16mg $L^{-1}$, respectively. It was concluded that nutrients can be effectively removed from polluted stream waters by cultivating phytoplankton.

Domestic Sewage Treatment with a Successive System of Activated Sludge Process and Phytoplankton Cultivation

  • Hong, W.H.;Pack, M.Y.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1978.10a
    • /
    • pp.209.1-209
    • /
    • 1978
  • Treatment of domestic sewage discharged from big cafeteria kitchen, especially rice-washing water, was examined by the use of activated sludge process and phytoplankton cultivation. Only with a activated sludge process COD value decreased from around 1000 mg/ι to 100 mg/ι, but nutrients, such as nitrogen and phosphate could not be removed sufficiently phytoplankton cultivation in combination with a activate sludge process could decrease COD value down to 50 mg/ι and nutrients values were also reduced substantially. However, the initial concentration of 20 mg/ι in the rice-washing water could not be removed completely without addition of activated sludge as a nitrogen source.

  • PDF

A Study on Development of Movable Mariculture System by Use of Deep Sea Water (I) (해양심층수 이용형 이동식 해상양식시스템 개발 (I))

  • Kim, Hyeon-Ju;Jung, Dong-Ho;Choi, Hark-Sun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.329-332
    • /
    • 2003
  • Aquaculture have been important role to supply food resources for mankind. However, competitive power of domestic mariculture industry was declined due to increase of labor and feed expenditures, and quantity import of low-priced livefishes from the developing underdeveloped nations in North and South East Asia. Mass production and quality enhancement can be pointed out to overcome such an industrial environment in this decade. To meet these requirement, movable mariculture base remodeling feasible vessel of chemical tanker or crude oil carrier has been proposed for more advanced mariculture management system by using deep seawater from about 200m which is sustainablely clean, nutrient-rich and cold seawater. Deep seawater can be applied for control of seawater temperature for mariculture base and cultivation phytoplankton and seaweed as feed. Besides mariculture, strategic marketing can be implemented by raw water and ice of deep seawater. Feasibility of applying deep seawater was considered after evaluating general movable mariculture base and management system.

  • PDF

Aquaculture Recycling Effluent from a Pond System Treating Animal Excreta Ecologically (축산폐수 처리 연못시스템의 처리수 재활용 양어)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.339-344
    • /
    • 2000
  • Utilization of animal excreta in aquaculture can have potentials of high fish production and low maintenance costs for fish farming and it can reduce water pollution caused by animal waste disposal. Integration of wastewater treatment pond system with aquaculture has been utilized in many countries. Ecologically balanced pond ecosystem is formed through the stabilization of wastes, the growth of aquatic plants, and the cultivation of fish. The most appropriate fish for rearing in these ponds are those which can feed directly on phytoplankton, especially algae. Carp were introduced into a tertiary pond - water depth of 2.2 m, water surface area of $130\;m^2$, volume of $148\;m^3$ - of a pond system treating milk cow excreta. The carp production was $125g{\cdot}m^{-2}year^{-1}$ which falls into upper range of $18\;-\;137g{\cdot}m^{-2}year^{-1}$ of treated sewage-fed carp farming of other countries. Average $BOD_5$ and T-N of the pond was 19.8 and $21.0\;mg{\cdot}L^{-1}$ respectively, and the ecological environment of it was suitable for growth of carp. Several carp of 100g were introduced in August into a secondary pond of the treatment system, whose average $BOD_5$ and T-N was 27.9 and $30.8\;mg{\cdot}L^{-1}$ respectively. They were died within one week, which may be attributed to the depletion of dissolved oxygen at dawn. Effluents from primary treatment can be used in fish pond with dilution and those from secondary treatment can be directly funnelled into it. Waste stabilization pond treating animal excreta can be utilized for fish rearing when its water quality maintains secondary treatment level.

  • PDF