• Title/Summary/Keyword: physiology signal

Search Result 344, Processing Time 0.025 seconds

Alcohol exposure induces depression-like behavior by decreasing hippocampal neuronal proliferation through inhibition of the BDNF-ERK pathway in gerbils

  • Kim, Ji-Eun;Ji, Eun-Sang;Seo, Jin-Hee;Lee, Moon-Hyoung;Cho, Se-Hyung;KimPak, Young-Mi;Seo, Tae-Beom;Kim, Chang-Ju
    • Animal cells and systems
    • /
    • v.16 no.3
    • /
    • pp.190-197
    • /
    • 2012
  • Depression is one of the most prevalent diseases of alcohol abuse. Brain-derived neurotrophic factor (BDNF) plays a critical role in cell survival in the hippocampus. Phosphorylation of extracellular signal-regulated kinase 1/2 (p-ERK1/2) is induced by BDNF, and it regulates cell proliferation and differentiation in the brain. We investigated the effects of alcohol intake on depression-like behavior, cell proliferation, expressions of BDNF and its downstream molecules in the hippocampus using Mongolian gerbils. The gerbils were divided into four groups: control group, 0.5 g/kg alcohol-treated group, 1 g/kg alcohol-treated group, 2 g/kg alcohol-treated group. Each dose of alcohol was orally administered for 3 weeks. The present results demonstrated that alcohol intake induced depression-like behavior. Both 5-hydroxytryptamine synthesis and its synthesizing enzyme tryptophan hydroxylase expression in the dorsal raphe and cell proliferation in the hippocampal dentate gyrus were decreased by alcohol intake. Alcohol intake suppressed BDNF expression, and resulted in the decrease of its downstream molecules, pERK1/2 and Bcl-2, in the hippocampus. We showed that alcohol intake may lead to a depressed-like state with reduced hippocampal cell proliferation through inhibition of the BDNF-ERK signaling pathway.

Distribution of Taste Receptors in Submandibular and von Ebner Salivary Glands

  • Jun, Yong-Ku;Kim, Se-Nyun;Lee, Cil-Han;Cho, Young-Kyung;Chung, Ki-Myung;Roper, Stephen D.;Kim, Kyung-Nyun
    • International Journal of Oral Biology
    • /
    • v.33 no.1
    • /
    • pp.13-23
    • /
    • 2008
  • Taste is a critically important sense for the survival of an organism. However, structure and distribution of taste receptors were only recently investigated. Although expression of the ion channels responsible for the sense of salty taste and acidity was observed in the non-taste cells, receptors for sweet and bitter taste were only identified in taste cells. Salivary glands are involved in the sensing of taste and plays important roles in the transduction of taste. The purpose of this study is to examine whether taste receptors are present in the salivary glands and to provide clues for the investigation of the taste-salivary glands interaction. Using microarray and RT-PCR analyses, the presence of taste receptor mRNAs in the rat von Ebner gland and submandibular gland was confirmed. Type I taste receptors were preferentially expressed in von Ebner gland, whereas type II taste receptors were expressed in both von Ebner gland and submandibular gland. The tastespecific signal tranducing proteins, $G_{\alpha}gustducin$ and phospholipase C ${\beta}2$, were also detected in both salivary glands by immunohistochemistry. Finally, the activation of the calcium signal in response to bitter taste in the acinar cells was also observed. Taken together, these results suggest that taste receptors are present in the von Ebner gland and submandibular gland and that type II taste receptors are functionally active in both salivary glands.

Dust particles-induced intracellular Ca2+ signaling and reactive oxygen species in lung fibroblast cell line MRC5

  • Lee, Dong Un;Ji, Min Jeong;Kang, Jung Yun;Kyung, Sun Young;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.327-334
    • /
    • 2017
  • Epidemiologic interest in particulate matter (PM) is growing particularly because of its impact of respiratory health. It has been elucidated that PM evoked inflammatory signal in pulmonary epithelia. However, it has not been established $Ca^{2+}$ signaling mechanisms involved in acute PM-derived signaling in pulmonary fibroblasts. In the present study, we explored dust particles PM modulated intracellular $Ca^{2+}$ signaling and sought to provide a therapeutic strategy by antagonizing PM-induced intracellular $Ca^{2+}$ signaling in human lung fibroblasts MRC5 cells. We demonstrated that PM10, less than $10{\mu}m$, induced intracellular $Ca^{2+}$ signaling, which was mediated by extracellular $Ca^{2+}$. The PM10-mediated intracellular $Ca^{2+}$ signaling was attenuated by antioxidants, phospholipase blockers, polyADPR polymerase 1 inhibitor, and transient receptor potential melastatin 2 (TRPM2) inhibitors. In addition, PM-mediated increases in reactive oxygen species were attenuated by TRPM2 blockers, clotrimazole (CLZ) and N-(p-amylcinnamoyl) anthranilic acid (ACA). Our results showed that PM10 enhanced reactive oxygen species signal by measuring DCF fluorescence and the DCF signal attenuated by both TRPM2 blockers CLZ and ACA. Here, we suggest functional inhibition of TRPM2 channels as a potential therapeutic strategy for modulation of dust particle-mediated signaling and oxidative stress accompanying lung diseases.

Intracellular pH regulation of mesenterffic arteriolar smooth myocytes of rat

  • Cho, Hyun-Sook;Park, Ki-Rang;Jang, Yeon-Jin;Park, Chun-Sik;Lee, Chae-Hun m
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.57-57
    • /
    • 2001
  • Intracellular pH(pH$\sub$i/) is strictly regulated since it is related to various cellular events such as contractility, signal transduction, ion regulation, cell volume, and energy production etc. In physiological conditions, pH$\sub$i/ of arteriolar smooth muscle faced substantial pressure to be changed during the regulation of blood flow. Therefore it is very important to know the regulatory mechanism of pH$\sub$i/.(omitted)

  • PDF

Janus Kinase 2 Inhibitor AG490 Inhibits the STAT3 Signaling Pathway by Suppressing Protein Translation of gp130

  • Seo, In-Ae;Lee, Hyun-Kyoung;Shin, Yoon-Kyung;Lee, Sang-Hwa;Seo, Su-Yeong;Park, Ji-Wook;Park, Hwan-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.2
    • /
    • pp.131-138
    • /
    • 2009
  • The binding of interleukin-6 (IL-6) cytokine family ligands to the gp130 receptor complex activates the Janus kinase (JAK)/ signal transducer and activator of transcription 3 (STAT3) signal transduction pathway, where STA T3 plays an important role in cell survival and tumorigenesis. Constitutive activation of STAT3 has been frequently observed in many cancer tissues, and thus, blocking of the gp130 signaling pathway, at the JAK level, might be a useful therapeutic approach for the suppression of STAT3 activity, as anticancer therapy. AG490 is a tyrphostin tyrosine kinase inhibitor that has been extensively used for inhibiting JAK2 in vitro and in vivo. In this study, we demonstrate a novel mechanism associated with AG490 that inhibits the JAK/STAT3 pathway. AG490 induced downregulation of gp130, a common receptor for the IL-6 cytokine family compounds, but not JAK2 or STAT3, within three hours of exposure. The downregulation of gp130 was not caused by enhanced degradation of gp130 or by inhibition of mRNA transcription. It most likely occurred by translation inhibition of gp130 in association with phosphorylation of the eukaryotic initiation factor-2 a. The inhibition of protein synthesis of gp130 by AG490 led to immediate loss of mature gp130 in cell membranes, due to its short half-life, thereby resulting in reduction in the STAT3 response to IL-6. Taken together, these results suggest that AG490 blocks the STAT3 activation pathway via a novel pathway.

Ezrin-radixin-moesin proteins are regulated by Akt-GSK3β signaling in the rat nucleus accumbens core

  • Kim, Wha Young;Cai, Wen Ting;Jang, Ju Kyong;Kim, Jeong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.121-126
    • /
    • 2020
  • The ezrin-radixin-moesin (ERM) proteins are a family of membrane-associated proteins known to play roles in cell-shape determination as well as in signaling pathways. We have previously shown that amphetamine decreases phosphorylation levels of these proteins in the nucleus accumbens (NAcc), an important neuronal substrate mediating rewarding effects of drugs of abuse. In the present study, we further examined what molecular pathways may be involved in this process. By direct microinjection of LY294002, a PI3 kinase inhibitor, or of S9 peptide, a proposed GSK3β activator, into the NAcc core, we found that phosphorylation levels of ERM as well as of GSK3β in this site are simultaneously decreased. These results indicate that ERM proteins are under the regulation of Akt-GSK3β signaling pathway in the NAcc core. The present findings have a significant implication to a novel signal pathway possibly leading to structural plasticity in relation with drug addiction.

Apoptin gene delivery by a PAMAM dendrimer modified with a nuclear localization signal peptide as a gene carrier for brain cancer therapy

  • Bae, Yoonhee;Lee, Jell;Kho, Changwon;Choi, Joon Sig;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.467-478
    • /
    • 2021
  • In this study, we aimed to synthesize PAMAMG3 derivatives (PAMAMG3-KRRR and PAMAMG3-HKRRR), using KRRR peptides as a nuclear localization signal and introduced histidine residues into the KRRR-grafted PAMAMG3 for delivering a therapeutic, carcinoma cell-selective apoptosis gene, apoptin into human primary glioma (GBL-14) cells and human dermal fibroblasts. We examined their cytotoxicity and gene expression using luciferase activity and enhanced green fluorescent protein PAMAMG3 derivatives in both cell lines. We treated cells with PAMAMG3 derivative/apoptin complexes and investigated their intracellular distribution using confocal microscopy. The PAMAMG3-KRRR and PAMAMG3-HKRRR dendrimers were found to escape from endolysosomes into the cytosol. The JC-1 assay, glutathione levels, and Annexin V staining results showed that apoptin triggered cell death in GBL-14 cells. Overall, these findings indicated that the PAMAMG3-HKRRR/apoptin complex is a potential candidate for an effective nonviral gene delivery system for brain tumor therapy in vitro.

Regulatory Action of $\beta-adrenergic$ Agonist and 8-bromocyclic AMP on Calcium Currents in the Unfertilized Mouse Eggs

  • Haan, Jae-Hee;Cheong, Seung-Jin;Kim, Yang-Mi;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • v.27 no.2
    • /
    • pp.175-183
    • /
    • 1993
  • There are many report suggesting that influx and intracellular calcium concentration $([Ca^{2+}]_i)$ are related to cell signalling in various cells. However, it has not been reported that calcium channel activation is affected by the substances involved in signal transduction pathways in the mouse eggs. In this study, the effects of isoprenaline (ISP) and cyclic AMP on calcium influx through calcium channels were investigated to show their relationship with the signal transduction process in unfertilized mouse eggs. Using whole cell voltage clamp techniques, calcium currents, elicited by the depolarizing pulses of 300 ms duration (from -50 mV to 50 mV in 10 mV increments) from a holding potential of -80 mV, were recorded. The current-voltage (I-V) relation of calcium currents was shown to be bell-shaped; the current began to activate at -50 mV and reached its maximum $(-1.33{\pm}0.16\;nA:\;mean{\pm}S.E.,\;n=7)$ at -10 mV, then decayed at around 50 mV. Calcium currents were fully activated within $7\;ms{\sim}20\;ms$ and completely inactivated 200 ms after onset of the step pulse. ISP within the concentration ranges of $10^{-8}\;M{\sim}10^{-4}\;M$ dose-dependently increased the amplitude calcium current. The permeable cyclic AMP analogue,8-bromocyclic AMP, also increased its maximal amplitude by 46ft at $10^{-5}\;M$, while protein kinase inhibitor (PKI), which is known to inhibit 0.02 phosphorylating units of cyclic AMP-dependent protein kinase (PKA) per microgram decreased calcium currents. Currents recorded in the presence of PKI were resistant to increase by the application of $10^{-5}\;M$. Also, PKI inhibited the calcium current increase elicited by ISP treatment. These results suggest that $\beta-adrenergic$ regulation of the calcium channel is mediated by the cAMP-dependent protein kinase. This signal transduction pathway might play a role in regulating $[Ca^{2+}]_i$, level due to the increase of calcium influx in mouse eggs.

  • PDF

Effect of Rehmannia glutinosa on Phosphorylation of ERK and CREB in Acute Cocaine-treated Rats (건지황의 급성코카인 투여에 의한 ERK, CREB 인산화에 미치는 효과)

  • Kwon, Ki-Won;Jang, Eun-Young;Im, Chae-Kwang;Yang, Chae-Ha;Kim, Kwang-Joong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.281-286
    • /
    • 2012
  • The present study was designed to investigate the effect of Rehmannia glutinosa on phosphorylation of extracellular signal-regulated kinase(ERK) and cAMP response element-binding protein(CREB) in the acute cocaine-treated rats. Rats orally received vehicle or extract of Rehmannia glutinosa 1 h prior to saline (1 ml/kg, i.p.) or cocaine hydrochloride (20 mg/kg, i.p.) treatment. Rats were sacrificed 15 min after a single intraperitoneal injection of saline or cocaine. Rehmannia glutinosa at dose of 50 mg/kg significantly decreased phosphorylation of ERK, CREB and Elk-1 in the nucleus accumbens and striatum of the cocaine-treated rat brain by immunocytochemistry. These results suggest that Rehmannia glutinosa may contribute to the effects of cocaine on gene expression and on behaviors.

The couple of netrin-1/α-Synuclein regulates the survival of dopaminergic neurons via α-Synuclein disaggregation

  • Eun Ji Kang;Seung Min Jang;Ye Ji Lee;Ye Ji Jeong;You Jin Kim;Seong Su Kang;Eun Hee Ahn
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.126-131
    • /
    • 2023
  • The abnormal accumulation and aggregation of the misfolded α-synuclein protein is the neuropathological hallmark of all α-synucleinopathies, including Parkinson's disease. The secreted proteins known as netrins (netrin-1, netrin-3, and netrin-4) are related to laminin and have a role in the molecular pathway for axon guidance and cell survival. Interestingly, only netrin-1 is significantly expressed in the substantia nigra (SN) of healthy adult brains and its expression inversely correlates with that of α-synuclein, which prompted us to look into the role of α-synuclein and netrin-1 molecular interaction in the future of dopaminergic neurons. Here, we showed that netrin-1 and α-synuclein directly interacted in pre-formed fibrils (PFFs) generation test, real time binding assay, and co-immunoprecipitation with neurotoxin treated cell lysates. Netrin-1 deficiency appeared to activate the dopaminergic neuronal cell death signal pathway via α-synuclein aggregation and hyperphosphorylation of α-synuclein S129. Taken together, netrin-1 can be a promising therapeutic molecule in Parkinson's disease.