• Title/Summary/Keyword: physiological stress

Search Result 1,366, Processing Time 0.029 seconds

Rice genotype, parental lineage and physiological tolerance to soil salinity shapes the community structure of rice seed bacterial endophytes

  • Walitang, Denver I.;Kim, Kiyoon;Chatterjee, Poulami;Kang, Yeongyeong;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.342-342
    • /
    • 2017
  • Rice seeds are a home to endophytic bacterial communities which serve as a source of the plant's endophytes. As rice undergo physiological and adaptive modifications through cross breeding in the process of attaining salinity tolerance, this may also lead to changes in the endophytic bacterial community especially those residing in the seeds. This study explores the community structure of seed bacterial endophytes as influenced by rice parental lineage, genotype and physiological adaptation to salinity stress. Endophytic bacterial diversity was studied through culture dependent technique, cloning and Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. Results revealed considerably diverse communities of bacterial endophytes in the interior of rice seeds. The richness of ribotypes ranges from 5-14 T-RFs corresponding to major groups of bacterial endophytes in the seeds. Endophytic bacterial diversity of the salt-sensitive IR29 is significantly more diverse compared to those of salt-tolerant cultivars. Proteobacteria followed by Actinobacteria and Firmicutes dominated the overall endophytic bacterial communities of the indica rice seeds based on 16S rDNA analysis of clones and isolates. Community profiles show common ribotypes found in all cultivars of the indica subspecies representing potential core microbiota belonging to Curtobacterium, Flavobacterium, Enterobacter, Xanthomonas, Herbaspirillum, Microbacterium and Stenotrophomonas. Multivariate analysis showed that the bacterial endophytic community and diversity of rice seeds are mainly influenced by their host's genotype, physiological adaptation to salt stress and parental lineage.

  • PDF

Measurement of Worker's Physiological and Biomechanical Responses during the Cherry Tomato Harvesting Work in a Greenhouse (온실에서 방울토마토 수확작업시 작업자의 생리학적 및 생체역학적 반응 측정)

  • SeonWoo, Hoon;Lim, Ki-Taek;Kim, Jang-Ho;Son, Hyun-Mok;Chung, Jong-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.223-230
    • /
    • 2011
  • Physiological signals such as body temperature, heart rate, blood pressure and heart rate variability and biomechanical workload for stress analysis were investigated during the cherry tomato harvesting work in a greenhouse. The skin temperatures raised $0.05^{\circ}C$/min, $0.03^{\circ}C$/ min, and $0.08^{\circ}C$/min in standing, stooping and squatting postures, respectively. Breath rate significantly increased from 18 to 28 breaths/min during the cherry tomato harvesting work. As the heart rate during the work ranged from about 72 to 110 beats/min (bpm), the cherry tomato harvesting work appeared to be a light intensity task of less than 110 bpm. The worker's average energy consumption rate in three positions during 43 min working time was 65.74 kcal (91 kcal/h in 70 kg). This was a light intensity of work, compared to 75 kcal/h in 70 kg of basic metabolic energy consumption rate of a worker with 70 kg weight; The maximum shear force on the disk (L5/ S1) due to static workload in the cherry tomato harvesting work was 446 N in the stooping posture, 321 N in the squatting posture and 287 N in the standing posture. Acute stress index expressed with the heart rate variability, increased parasympathetic activation up to about 70 while workers were doing most agricultural work in this study. This study provided a system to measure quantitatively workers' physiological change, kinematics and kinetic factors without any restrictions of space in the greenhouse works.

Development of Stress-tolerant Crop Plants

  • Park, Hyung-In;Kang, Jung-Youn;Sohn, Hee-Kyung;Kim, Soo-Young
    • Journal of Plant Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.53-58
    • /
    • 2002
  • Adverse environmental conditions such as drought, high salt and cold/freezing are major factors that reduces crop productivity worldwide. According to a survey, 50-80% of the maximum potential yield is lost by these "environmental or abiotic stresses", which is approximately ten times higher than the loss by biotic stresses. Thus, improving stress-tolerance of crop plants is an important way to improve agricultural productivity, In order to develop such stress-tolerant crop plants, we set out to identify key stress signaling components that can be used to develop commercially viable crop varieties with enhanced stress tolerance. Our primary focus so far has been on the identification of transcription factors that regulate stress responsive gene expression, especially those involved in ABA-mediated stress response. Be sessile, plants have the unique capability to adapt themselves to the abiotic stresses. This adaptive capability is largely dependent on the plant hormone abscisic acid (ABA), whose level increases under various stress conditions, triggering adaptive response. Central to the response is ABA-regulated gene expression, which ultimately leads to physiological changes at the whole plant level. Thus, once identified, it would be possible to enhance stress tolerance of crop plants by manipulating the expression of the factors that mediate ABA-dependent stress response. Here, we present our work on the isolation and functional characterization of the transcription factors.n factors.

Effect of salt stress on the anthocyanin content and associated genes in Sorghum bicolor L.

  • Jeon, Donghyun;Lee, Solji;Choi, Sehyun;Seo, Sumin;Kim, Changsoo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.105-117
    • /
    • 2020
  • Abiotic stress is one of the most serious problems in plant productivity because it dramatically delays plant growth and development. One of the abiotic stresses, soil salinity, has an adverse effect on plant growth, particularly in areas where irrigation is necessary like semiarid Asia and Africa. Among several physiological parameters, anthocyanin accumulation is a valuable indicator of the condition of the plant, and it tends to increase under salt stress conditions because of its protective role in such an environment. Consequently, it may be important to search for well adapted genotypes for upcoming climate changes. Anthocyanins are known to have important roles in defense against biotic and abiotic stresses, providing important functions for protecting plant cells from reactive oxygen species. In this study, we investigated the anthocyanin accumulation between two Korean sorghum genotypes, Sodamchal and Nampungchal. The two genotypes were subjected to a regulated salinity condition, and the anthocyanin contents were evaluated in both. In Nampungchal, the anthocyanin content increased with 150 mM NaCl treatment during the time course of the experiment. However, the anthocyanin content of Sodamchal decreased in the same condition. The measured values of the anthocyanin content should be useful to identify the intensity of the salt tolerance in Sorghum bicolor L. Furthermore, we studied gene expression profiling of salt stress related genes with qRT-PCR. These results suggest that Nampungchal is a more tolerant genotype to salt stress compared to Sodamchal. This information should be useful for breeding salt-resistant cultivars in sorghum.

Differences in Stress Resistance Level Felt by Obese and Normal Child, and Their Level of Obesity (비만아동과 비 비만아동 간 스트레스저항 차이와 비만도 집단 간 스트레스저항 차이 분석)

  • Jung, Un-Joo;Lee, Ji-An;Bak, Ki-Ja
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.346-351
    • /
    • 2017
  • This research examines 240 patients who visited a center a specific city, between July-September 2017. Subjects underwent body composition analysis and brainwave measurements, and were subsequently divided into groups according to BMI and body fat percentage. These patients were measured by timeseries linear analysis for their brain function and observed via brainwave activities. Results of the research are as follows: there is a difference in stress-resistance between obese and those in the healthy weight range. This implies there is a causal relationship between stress and obesity. In addition, the methodology used in this study, which is a scientific and objective physiological indicator of a scientific and objective physiological index, suggests that the results of the study are reliable. Results support that managing stress moderates obesity-related problems.

Plant Growth Monitoring Using Thermography -Analysis of nutrient stress- (열영상을 이용한 작물 생장 감시 -영양분 스트레스 분석-)

  • 류관희;김기영;채희연
    • Journal of Biosystems Engineering
    • /
    • v.25 no.4
    • /
    • pp.293-300
    • /
    • 2000
  • Automated greenhouse production system often require crop growth monitoring involving accurate quantification of plant physiological properties. Conventional methods are usually burdensome, inaccurate, and harmful to crops. A thermal image analysis system can accomplish rapid and accurate measurements of physiological-property changes of stressed crops. In this research a thermal imaging system was used to measure the leaf-temperature changes of several crops according to nutrient stresses. Thermal images were obtained from lettuce, cucumber, and pepper plants. Plants were placed in growth chamber to provide relatively constant growth environment. Results showed that there were significant differences in the temperature of stressed plants and non-stressed plants. In a case of the both N deficiency and excess, the leaf temperatures of cucumber were $2^{\circ}C$ lower than controlled temperature. The leaf temperature of cucumber was $2^{\circ}C$ lower than controlled temperature only when it was under N excess stress. For the potassium deficiency or excess stress, the leaf temperaures of cucumber and hot pepper were $2^{\circ}C$ lower than controls, respectively. The phosphorous deficiency stress dropped the leaf temperatures of cucumber and hot pepper $2^{\circ}C$ and $1.5^{\circ}C$ below than controls. However, the leaf temperature of lettuce did not change. It was possible to detect the changes in leaf temperature by infrared thermography when subjected to nutrition stress. Since the changes in leaf temperatures were different each other for plants and kinds of stresses, however, it is necessary to add a nutrient measurement system to a plant-growth monitoring system using thermography.

  • PDF

Biomass partitioning and physiological responses of four Moroccan barley varieties subjected to salt stress in a hydroponic system

  • Said Bouhraoua;Mohamed Ferioun;Srhiouar Nassira;Abdelali Boussakouran;Mohamed Akhazzane ;Douae Belahcen;Khalil Hammani;Said Louahlia
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.115-126
    • /
    • 2023
  • A hydroponics experiment was performed to study the physiological and biochemical changes in Moroccan barley (Hordeum vulgare L.) varieties cultivated under salt stress conditions. Four barley varieties were grown under exposure to three salt concentrations, including 0, 200, and 300 mM NaCl. The ANOVA for both salt stress-sensitive and resistant varieties indicated that salt treatment represented the main source of variability in all studied traits. Salt treatment significantly reduced root and shoot dry weight (RDW and SDW), relative water content (RWC), and chlorophyll content (Chl a, Chl b, and Chl T). However, increases in electrolyte leakage (EL) along with proline and total soluble sugar (TSS) contents were recorded. In addition, large variations in all measured traits were found between varieties. The 'Massine' and 'Laanaceur' varieties displayed relatively higher RDW and SDW values. The 'Amira' and 'Adrar' varieties showed lower RWC values and Chl contents than those of the controls indicating their relative sensitivity to salt stress. Principal component analysis revealed that most of the variation was captured by PC1 (72% of the total variance) which grouped samples into three categories according to salt treatment. Correlation analyses highlighted significant associations between most parameters. Positive relationships were found between RDW, SDW, RWC, Chl content, and soluble proteins contents, while all of these parameters were negatively associated with EL intensity, proline content, and TSS content. The results from this study showed that the 'Massine' and 'Laanaceur' varieties were relatively salt-tolerant. These two salt-tolerant varieties present a good genetic background for breeding of barley varieties showing high salt tolerance.

Relationships of Psychological Factors to Stress and Heart Rate Variability as Stress Responses Induced by Cognitive Stressors (스트레스에 대한 심리 반응 유형과 심박변이도의 관련성)

  • Jang, Eun Hye;Kim, Ah Young;Yu, Han Young
    • Science of Emotion and Sensibility
    • /
    • v.21 no.1
    • /
    • pp.71-82
    • /
    • 2018
  • Stress involves changes in behavior, autonomic function and the secretion of hormones. Autonomic nervous system (ANS) contributes to physiological adaptive process in short durations. In particular, heart rate variability (HRV) analysis is commonly used as a quantitative marker depicting the ANS activity related to mental stress. The aim of this study is to investigate correlations between psychological responses to stress and HRV indices induced by the cognitive stressor. Thirty-three participants rated their mental and physical symptoms occurred during the past two weeks on Stress Response Inventory (SRI), which is composed of seven stress factors that may influence the status of mental stress levels. Then, they underwent the psychophysiological procedures, which are collected electrocardiogram (ECG) signals during a cognitive stress task. HRV indices, the standard deviation of R-R interval (SDNN), root mean square of successive R-R interval difference (RMSSD) and low frequency (LF)/high frequency (HF) ratio were extracted from ECG signals. Physiological responses were calculated stress responses by subtracting mean of the baseline from the mean of recovery. Stress factors such as tension, aggression, depression, fatigue, and frustration were positively correlated to HRV indices. In particular, aggression had significant positive correlations to SDNN, RMSSD and LF/HF ratio. Increased aggressive responses to stress correlated with the increases of all HRV indices. This means the increased autonomic coactivation. Additionally, tension, depression, fatigue, and frustration were positively associated with RMSSD reflecting increases in parasympathetic activation. The autonomic coactivation may represent an integrated response to specific cognitive reactions such as the orienting response.

Associations of Perceived Stress Level, Serum Cortisol Level, and Telomere Length of Community-dwelling Adults in Korea (지역사회 거주 성인의 지각된 스트레스, 혈중 코티졸 수준 및 텔로미어 길이의 관련성)

  • Kim, A Young;Kim, Nahyun
    • Journal of Korean Biological Nursing Science
    • /
    • v.24 no.4
    • /
    • pp.235-242
    • /
    • 2022
  • Purpose: To investigate associations of perceived stress level, serum cortisol level, and telomere length of community-dwelling adults in Korea. Methods: Data of a total of 135 community-dwelling adults aged over 40 years living in D metropolitan city from December 2020 to March 2021 were collected. Perceived stress level over the past month were measured using the Perceived Stress Score. Serum cortisol level was analyzed using a chemiluminescent microparticle immunoassay. Telomere length was determined using quantitative real-time polymerase chain reaction. The statistical package SPSS 23.0 was used to perform Chi-square test, independent t-test, and Pearson's correlation coefficient analysis. Results: There was no association between perceived stress and serum cortisol level (r = .07, p= .402). Serum cortisol level was not significantly associated with telomere length either (r = -.15, p= .081). However, the higher the perceived stress level, the shorter the telomere length (r= -.29, p= .001). Conclusion: These results suggest that perceived stress might induce physiological stress, which might partially affect gene biology. Further longitudinal research is needed to investigate the effect of perceived stress on telomere length. Intervention for relieving stress should be included in stabilizing the genetic environment of adults.

The Assessment of Dynamic Mental Stress with Wearable Heart Activity Monitoring System (착용형 심장활동 모니터링 시스템을 활용한 정신적 스트레스 평가)

  • Kim, Kyeong-Seop;Shin, Seung-Won;Lee, Jeong-Whan;Choi, Hee-Jung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1109-1115
    • /
    • 2008
  • In the ubiquitous health monitoring environments, it is quite important not only to evaluate the physiological health condition but also mental stress condition. In order to achieve this goal, a heart activity monitoring system utilizing a wearable bipolar electrode is devised and the heart rate variability(HRV) is extracted and interpreted in both frequency and time feature domains. Consequently, to evaluate the emotional stress condition of the subjects, a stress-induced experimental protocol was applied to healthy subjects and the time and frequency features of heart activity were analyzed in terms of the ratio of low frequency components v.s., high frequency components and the relevant the moving average distributions compromising the successive RR peaks intervals in the ambulatory ECG measurement system.