DOI QR코드

DOI QR Code

Associations of Perceived Stress Level, Serum Cortisol Level, and Telomere Length of Community-dwelling Adults in Korea

지역사회 거주 성인의 지각된 스트레스, 혈중 코티졸 수준 및 텔로미어 길이의 관련성

  • Kim, A Young (Department of Nursing, Graduate School of Keimyung University) ;
  • Kim, Nahyun (College of Nursing, Keimyung University)
  • Received : 2022.09.17
  • Accepted : 2022.11.23
  • Published : 2022.11.30

Abstract

Purpose: To investigate associations of perceived stress level, serum cortisol level, and telomere length of community-dwelling adults in Korea. Methods: Data of a total of 135 community-dwelling adults aged over 40 years living in D metropolitan city from December 2020 to March 2021 were collected. Perceived stress level over the past month were measured using the Perceived Stress Score. Serum cortisol level was analyzed using a chemiluminescent microparticle immunoassay. Telomere length was determined using quantitative real-time polymerase chain reaction. The statistical package SPSS 23.0 was used to perform Chi-square test, independent t-test, and Pearson's correlation coefficient analysis. Results: There was no association between perceived stress and serum cortisol level (r = .07, p= .402). Serum cortisol level was not significantly associated with telomere length either (r = -.15, p= .081). However, the higher the perceived stress level, the shorter the telomere length (r= -.29, p= .001). Conclusion: These results suggest that perceived stress might induce physiological stress, which might partially affect gene biology. Further longitudinal research is needed to investigate the effect of perceived stress on telomere length. Intervention for relieving stress should be included in stabilizing the genetic environment of adults.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아수행된 연구임(No. 2020R1A2C1006590).

References

  1. Lazarus RS. From psychological stress to the emotions: a history of changing outlooks. Annual Review of Psychology. 1993;44(1):1-22. https://doi.org/10.1146/annurev.ps.44.020193.000245
  2. Koeppen BM, Stanton BA. Berne & Levy physiology, updated edition e-book. Elsevier Health Sciences, 2009.
  3. Foss B, Dyrstad SM. Stress in obesity: cause or consequence? Medical Hypotheses. 2011; 77(1):7-10. https://doi.org/10.1016/j.mehy.2011.03.011
  4. Thayer JF, Lane RD. The role of vagal function in the risk for cardiovascular disease and mortality. Biological Psychology. 2007;74(2):224-242. https://doi.org/10.1016/j.biopsycho.2005.11.013
  5. Antonelli M, Barbieri G, Donelli D. Effects of forest bathing (shinrin-yoku) on levels of cortisol as a stress biomarker: a systematic review and meta-analysis. International Journal of Biometeorology. 2019;63(8):1117-1134. https://doi.org/10.1007/s00484-019-01717 -x
  6. Iwakabe K, Shimada M, Ohta A, Yahata T, Ohmi Y, Habu S, et al. The restraint stress drives a shift in Th1/Th2 balance toward Th2-dominant immunity in mice. Immunology Letters. 1998;62(1):39-43. https://doi.org/10.1016/S0165-2478(98)00021-2
  7. Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, et al. Accelerated telomere shortening in response to life stress. Proceedings of the National Academy of Sciences. 2004;101(49):17312-17315. https://doi.org/10.1073/pnas.0407162101
  8. Han LKM, Verhoeven JE, Tyrka AR, Penninx BW, Wolkowitz OM, Mansson KN, et al. Accelerating research on biological aging and mental health: current challenges and future directions. Psychoneuroendocrinology. 2019;106:293-311. https://doi.org/10.1016/j.psyneuen.2019.04.004
  9. Mathur MB, Epel E, Kind S, Desai M, Parks CG, Sandler DP, et al. Perceived stress and telomere length: a systematic review, meta-analysis, and methodologic considerations for advancing the field. Brain, Behavior, and Immunity. 2016;54:158-169. https://doi.org/10.1016/j.bbi.2016.02.002
  10. Revesz D, Verhoeven JE, Milaneschi Y, de Geus EJ, Wolkowitz OM, Penninx BW. Dysregulated physiological stress systems and accelerated cellular aging. Neurobiology of Aging. 2014;35(6):1422-1430. https://doi.org/10.1016/j.neurobiolaging.2013.12.027
  11. Sahin E, DePinho RA. Axis of ageing: telomeres, p53 and mitochondria. Nature Reviews Molecular Cell Biology. 2012;13(6):397-404. https://doi.org/10.1038/nrm3352
  12. Tyrka AR, Carpenter LL, Kao HT, Porton B, Philip NS, Ridout SJ, et al. Association of telomere length and mitochondrial DNA copy number in a community sample of healthy adults. Experimental Gerontology. 2015;66:17-20. https://doi.org/10.1016/j.exger.2015.04.002
  13. Tyrka AR, Parade SH, Price LH, Kao HT, Porton B, Philip NS, et al. Alterations of mitochondrial DNA copy number and telomere length with early adversity and psychopathology. Biological Psychiatry. 2016;79(2):78-86. https://doi.org/10.1016/j.biopsych.2014.12.025
  14. Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193-1198. https://doi.org/10.1126/science.aab3389
  15. Darrow SM, Verhoeven JE, Revesz D, Lindqvist D, Penninx BW, Delucchi KL, et al. The association between psychiatric disorders and telomere length: a meta-analysis involving 14,827 persons. Psychosomatic Medicine. 2016;78(7):776-787. https://doi.org/10.1097/PSY.0000000000000356
  16. Rode L, Nordestgaard BG, Bojesen SE. Peripheral blood leukocyte telomere length and mortality among 64,637 individuals from the general population. Journal of the National Cancer Institute. 2015;107(6):djv074. https://doi.org/10.1093/jnci/djv074
  17. Shimanoe C, Hara M, Nishida Y, Nanri H, Horita M, Yamada Y, et al. Perceived stress, depressive symptoms, and oxidative DNA damage. Psychosomatic Medicine. 2018;80(1): 28-33. https://doi.org/10.1097/PSY.0000000000000513
  18. Epel ES. Psychological and metabolic stress: a recipe for accelerated cellular aging? Hormones. 2009;8(1):7-22. https://doi.org/10.14310/horm.2002.1217
  19. McEwen BS. Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. European Journal of Pharmacology. 2008;583(2-3):174-185. https://doi.org/10.1016/j.ejphar.2007.11.071
  20. Parks CG, Miller DB, McCanlies EC, Cawthon RM, Andrew ME, DeRoo LA, et al. Telomere length, current perceived stress, and urinary stress hormones in women. Cancer Epidemiology, Biomarkers & Prevention. 2009;18(2):551-560. https://doi.org/10.1158/1055-9965.EPI-08-0614
  21. Epel ES, Lin J, Wilhelm FH, Wolkowitz OM, Cawthon R, Adler NE, et al. Cell aging in relation to stress arousal and cardiovascular disease risk factors. Psychoneuroendocrinology. 2006;31(3):277-287. https://doi.org/10.1016/j.psyneuen.2005.08.011
  22. Georgin-Lavialle S, Moura DS, Bruneau J, Chauvet-Gelinier JC, Damaj G, Soucie E, et al. Leukocyte telomere length in mastocytosis: correlations with depression and perceived stress. Brain, Behavior, and Immunity. 2014;35:51-57. https://doi.org/10.1016/j.bbi.2013.07.009
  23. Ludlow AT, Zimmerman JB, Witkowski S, Hearn JW, Hatfield BD, Roth SM. Relationship between physical activity level, telomere length, and telomerase activity. Medicine and Science in Sports and Exercise. 2008;40(10):1764-1771. https://doi.org/10.1249/MSS.0b013e31817c92aa
  24. Prather AA, Gurfein B, Moran P, Daubenmier J, Acree M, Bacchetti P, et al. Tired telomeres: poor global sleep quality, perceived stress, and telomere length in immune cell subsets in obese men and women. Brain, Behavior, and Immunity. 2015;47:155-162. https://doi.org/10.1016/j.bbi.2014.12.011
  25. Vyas CM, Ogata S, Reynolds CF, Mischoulon D, Chang G, Cook NR, et al. Telomere length and its relationships with lifestyle and behavioural factors: variations by sex and race/ethnicity. Age and Ageing. 2021;50(3):838-846. https://doi.org/10.1093/ageing/afaa186
  26. Cai N, Chang S, Li Y, Li Q, Hu J, Liang J, et al. Molecular signatures of major depression. Current Biology. 2015;25(9):1146-1156. https://doi.org/10.1016/j.cub.2015.03.008
  27. Park JO, Seo YS. Validation of the perceived stress scale (PSS) on samples of Korean university students. Korean Journal of Psychology: General. 2010;29(3):611-629.
  28. Cawthon, Richard M. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Research 2009;37(3):e21. https://doi.org/10.1093/nar/gkn1027
  29. Shim IB, Joe SH, Ham BJ, Han CS, Jeong HG, Ko YH. The stress perception, depressive symptoms and medical comorbidity in healthcare Center. Korean Journal of Psychosomatic Medicine. 2013;21(1):27-43.
  30. Andreou E, Alexopoulos EC, Lionis C, Varvogli L, Gnardellis C, Chrousos GP, et al. Perceived stress scale: reliability and validity study in Greece. International Journal of Environmental Research and Public Health. 2011;8(8):3287-3298. https://doi.org/10.3390/ijerph8083287
  31. Koh MS, Ahn SH, Kim JS, Park SY, Oh JW. Pregnant women's antenatal depression and influencing factors. Korean Journal Women Health Nursing. 2019; 25(1):112-123. https://doi.org/10.4069/kjwhn.2019.25.1.112
  32. Pullens MJ, De Vries J, Van Warmerdam LJ, Van De Wal MA, Roukema JA. Chemotherapy and cognitive complaints in women with breast cancer. Psycho-Oncology. 2013;22(8):1783-1789. https://doi.org/10.1002/pon.3214
  33. Zimmer C, Basler HD, Vedder H, Lautenbacher S. Sex differences in cortisol response to noxious stress. The Clinical Journal of Pain 2003;19(4):233-239. https://doi.org/10.1097/00002508-200307000-00006
  34. Kirschbaum C, Wust S, Hellhammer D. Consistent sex differences in cortisol responses to psychological stress. Psychosomatic Medicine. 1992;54(6):648-657. https://doi.org/10.1097/00006842-199211000-00004
  35. Badrick E, Kirschbaum C, Kumari M. The relationship between smoking status and cortisol secretion. The Journal of Clinical Endocrinology & Metabolism 2007;92(3):819-824. https://doi.org/10.1210/jc.2006-2155
  36. Pineles SL, Rasmusson AM, Yehuda R, Lasko NB, Macklin ML, Pitman RK, et al. Predicting emotional responses to potentially traumatic events from pre-exposure waking cortisol levels: a longitudinal study of police and firefighters. Anxiety, Stress, and Coping. 2013;26(3):241-253. https://doi.org/10.1080/10615806.2012.672976
  37. Lim GY, Jang TW, Sim CS, Ahn YS, Jeong KS. Comparison of cortisol level by shift cycle in Korean firefighters. International Journal of Environmental Research and Public Health. 2020;17(13):4760. https://doi.org/10.3390/ijerph17134760
  38. Chida Y, Steptoe A. Cortisol awakening response and psychosocial factors: a systematic review and meta-analysis. Biological Psychology. 2009;80(3):265-278. https://doi.org/10.1016/j.biopsycho.2008.10.004
  39. Hirokawa K, Ohira T, Nagao M, Nagayoshi M, Kajiura M, Imano H, et al. Associations between occupational status, support at work, and salivary cortisol levels. International Journal of Behavioral Medicine 2022;29(3):299-307. https://doi.org/10.1007/s12529-021-10020-2
  40. Damjanovic AK, Yang Y, Glaser R, Kiecolt-Glaser JK, Nguyen H, Laskowski B, et al. Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer's disease patients. The Journal of Immunology. 2007;179(6):4249-4254. https://doi.org/10.4049/jimmunol.179.6.4249