• 제목/요약/키워드: physiological signal

Search Result 431, Processing Time 0.031 seconds

A Technique of Segment Expression and RNA Interference (SERI) Reveals a Specific Physiological Function of a Cysteine-Rich Protein Gene Encoded in Cotesia plutellae Bracovirus

  • Barandoc, Karen;Kim, Yong-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.610-615
    • /
    • 2009
  • As a provirus, polydnavirus has a segmented DNA genome on chromosome(s) of host wasp. It contains several genes in each segment that presumably play critical roles in regulating physiological processes of target insect parasitized by the wasp. A cysteine-rich protein 1 (CRP1) is present in the polydnavirus Cotesia plutellae bracovirus (CpBV) genome, but its expression and physiological function in Plutella xylostella parasitized by the viral host C. plutellae is not known. This CpBV-CRP1 encoding 189 amino acids with a putative signal peptide (20 residues) was persistently expressed in parasitized P. xylostella with gradual decrease at the late parasitization period. Expression of CpBV-CRP1 was tissue-specific in the fat body/epidermis and hemocyte, but not in the gut. Its physiological function was analyzed by inducing transient expression of a CpBV segment containing CpBV-CRP1 and its promoter, which caused significant reduction in hemocyte -spreading and delayed larval development. When the treated larvae were co-injected with double-stranded RNA of CpBV-CRP1, the expression of CpBV-CRP1 disappeared, whereas other genes encoded in the CpBV segment was expressed. These co-injected larvae significantly recovered the hemocyte-spreading capacity and larval development rate. This study reports that CpBV-CRP1 is expressed in P. xylostella parasitized by C. plutellae and its physiological function is to alter the host immune and developmental processes.

Design of Intelligent Emotion Recognition Model

  • Kim, Yi-gon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.611-614
    • /
    • 2001
  • Voice is one of the most efficient communication media and it includes several kinds of factors about speaker, context emotion and so on. Human emotion is expressed is expressed in the speech, the gesture, the physiological phenomena(the breath, the beating of the pulse, etc). In this paper, the emotion recognition method model using neuro-fuzzy in order to have cognizance of emotion from voice signal is presented and simulated.

  • PDF

A Study on Pulse Wave Measurement System Based on USB Driver Transmission System (USB Driver 전송시스템 기반의 맥파 측정 시스템에 관한 연구)

  • Kim, E.G.;Park, M.K.;Han, S.S.;Huh, Y.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1914-1915
    • /
    • 2007
  • The period and strength of the pulse on the radial artery are important physiological factors, and they have been used to diagnosis in both Western and Eastern countries for a long time and has been developed as a unique method of diagnosis at each countries. Recently, there are a lot of systems which can give diagnosis information by recording the pulse wave and analyzing the characteristics of the pulse shape. This study describes the Pulse-Wave Measurement System which is able to measure the pulse wave signal using piezoresistive sensor and the pulse wave signal measured by the developed system is transmitted to a computer on the basis of the USB Driver. It has finally shown the the pulse wave signal measured by the sender is appeared to the host PC in real time. The Pulse-Wave Measurement System used the piezoresistive sensor to measure the pulse wave signal and the differential amplifier(AD620) to amplify the pulse wave signal which is small signal. And it used the ADC to convert analog to digital for the measured analog signal and the interface with a computer. It transmitted the measured pulse signal through USB transmission module to the host computer and Labview tool shows it. This Pulse-Wave measurement system will afford comvenience of detecting pulse wave to user related to oriental medicine.

  • PDF

An Estimating Method of Contractile State Changes Come From Continuous Isometric Contraction of Skeletal Muscle (골격근의 지속적인 등척성 수축 시 발생하는 수축상태변화 추정 방법)

  • Park Hyung-Jun;Lee Seung-Ju
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.55-63
    • /
    • 2003
  • In this study was proposed that a new estimating method for investigation of contractile state changes which generated from continuous isometric contraction of skeletal muscle. The physiological changes(EMG, ECG) and the psychological changes by CNS(central nervous system) were measured by experiments, while the muscle of subjects contracted continuously with isometric contraction in constant load. The psychological changes were represented as three-step-change named 'fatigue', 'pain' and 'sick(greatly pain)' from oral test, and the method which compared physiological change with psychological change on basis of these three steps was developed. The result of analyzing the physiological signals, EMG and ECG signal changes were observed at the vicinity of judging point in time of psychological changes. Namely, it is supposed that contractile states have three kind of states pattern (stable, fatigue, pain) instead of two states (stable, fatigue).

Modulation of Cardiac ATP-Sensitive $K^+$ Channels Via Signal Transduction Mechanisms During Ischemic Preconditioning

  • Han, Jin;Kim, Nari;Seog, Dae-Hyun;Kim, Euiyong
    • Journal of Life Science
    • /
    • v.12 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • In several species, a short period of ischemic preconditioning protects the heart by reducing the size of infarcts resulting from subsequent prolonged bouts of ischemia. The mechanism by which activation of ATP-sensitive $K^+$($K_ATP$) channels could provide the memory associated with ischemic preconditioning is still under debate. Several signal transduction pathways have been implicated in the mechanisms of protection induced by ischemic preconditioning. The exact receptor-coupled pathways involved in preconditioning remain to be identified. Likely extracellular agonists are those whose circulating levels increase under conditions that activate $K_ATP$ channels; these conditions include ischemia and ischemic preconditioning. Potential physiological agonists include the following: (1) nitric oxide; (2) catecholamine; (3) adenosine; (4) acetylcholine; (5) bradykinin and (6) prostacycline. The purpose of this review was to understand the mechanism by which biological signal transduction mechanism acts as a link in one or more known receptor-mediated pathways to increase $K_ATP$ channel activity during ischemic preconditioning.

  • PDF

Algorithm detecting an evoked potential using the ensemble averaged bispectrum (The ensemble averaged bispectrum을 이용한 유발전위 검출 알고리즘)

  • Choi, J.M.;Bae, B.H.;Kim, S.Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.124-127
    • /
    • 1994
  • A technique based on bispectrun averaging is described for generally recovering the signal waveform from a set of noisy signals with variable signal delay. The technique does not require explicit tune alignment of signals and any initial estimate of signal. The new method is suggested and is compared with other methods. This method are numerically investigated using computer generated-data and a physiological signal and noise Some experimental results for the evoked potential studios that demonstrate the technique are given. The results show the effectiveness of the technique: various potential applications of the technique might be expected.

  • PDF

Noise Reduction of PPG Signal During Free Movements Using Adaptive SFLC(Scaled Fourier Linear Combiner) (적응 SFLC(Scaled Fourier Linear Combiner)를 이용한 활동 중의 PPG 신호의 잡음 감소)

  • Kim, Sung-Min;Cha, Eun-Jong;Kim, Deok-Won;Yoo, Jae-Ha;Kim, Dong-Yon;Kim, Soo-Chan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.138-141
    • /
    • 2006
  • Blood flow is one of vital signals related to human physiological information. Photoplethysmograph (PPG) has been used to measure indirectly heart rate, blood oxygen saturation ($SpO_2$), and so on. Because PPG signal is weak and sensitive to motion artifacts, it is very important to continuously obtain stable PPG signal during free movement. In this study, we applied the scaled Fourier linear combiner (SFLC) using both the adaptive filter and FLC to remove effectively the motion artifacts as well as background noise in the real time without additional signal correlated with motion from a accelerometer. The proposed method would be useful to reduce the movement and background noise which are not synchronized with heart rate.

Multi-biological Signal-based Smart Trigger System for Cardiac MRI (다중 생체 신호를 이용한 심장 자기공명영상 스마트 트리거 시스템)

  • Yang, Young-Joong;Park, Jinho;Hong, Hye-Jin;Ahn, Chang-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.945-949
    • /
    • 2014
  • In cardiac magnetic resonance imaging (CMRI), heart and respiratory motions are one of main obstacles in obtaining diagnostic quality of images. To synchronize CMRI to the physiological motions, ECG and respiratory gatings are commonly used. In this paper multi-biological signal (ECG, respiratory, and SPO2) based smart trigger system is proposed. By using multi-biological signal, the proposed system is robust to the induced noise such as eddy current when gradient pulsing is continuously applied during the examination. Digital conversion of the multi-biological signal makes the system flexible in implementing smart and intelligent algorithm to detect cardiac and respiratory motion and to reject arrhythmia of the heart. The digital data is used for real-time trigger, as well as signal display, and data storage which may be used for retrospective signal processing.

A Study on Driver's Physiological Response in Train Simulator (열차 시뮬레이터 조작 시 운전자의 생체신호 변화에 대한 연구)

  • Jang, Hye-Yoen;Jang, Jae-Ho;Kim, Tea-Sik;Han, Chang-Soo;Han, Jung-Soo;Ahn, Jae-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.129-135
    • /
    • 2006
  • he purpose of this study is to measure bio-signal to investigate the driver's physiological response change under real situation using train simulator. The train simulator used in this study is KTX model and according to changes of driving situation, The bio-signal controlled by autonomic nervous system, such as GSR(Galvanic Skin Response), SpO2(Saturation percent O2), HR(Heart Rate), ECG(Electrocardiograph), EEG(Electroencephagram) and movement and response of eye were measured. Statistically significant difference in bio-signal data and eye movement activity pattern were investigated under several different driving speeds using analysis of variance (p<0.05). The GSR and HR value measured in average and mission speed operation is higher than in high-speed operation. β wave of EEG in average speed operation become more activated than in high speed operation. In accordance with a characteristic of rail vehicle, movement and response of eye in high-speed operation requiring relatively simple maneuver become less activated than in either average or mission speed operations. Conclusively, due to more careful driving controls in average and mission speed operation are required than in high-speed operation, level of mental and physical stresses of train driver was increased and observed through changes of bio-signal and eye movement measured in this study.

Canonical Correlation of 3D Visual Fatigue between Subjective and Physiological Measures

  • Won, Myeung Ju;Park, Sang In;Whang, Mincheol
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.785-791
    • /
    • 2012
  • Objective: The aim of this study was to investigate the correlation between 3D visual fatigue and physiological measures by canonical correlation analysis enabling to categorical correlation. Background: Few studies have been conducted to investigate the physiological mechanism underlying the visual fatigue caused by processing 3D information which may make the cognitive mechanism overloaded. However, even the previous studies lack validation in terms of the correlation between physiological variables and the visual fatigue. Method: 9 Female and 6 male subjects with a mean age of $22.53{\pm}2.55$ voluntarily participated in this experiment. All participants were asked to report how they felt about their health sate at after viewing 3D. In addition, Low & Hybrid measurement test(Event Related Potential, Steady-state Visual Evoked Potential) and for evaluating cognitive fatigue before and after viewing 3D were performed. The physiological signal were measured with subjective fatigue evaluation before and after in watching the 3D content. For this study suggesting categorical correlation, all measures were categorized into three sets such as included Visual Fatigue set(response time, subjective evaluation), Autonomic Nervous System set(PPG frequency, PPG amplitude, HF/LF ratio), Central Nervous System set(ERP amplitude P4, O1, O2, ERP latency P4, O1, O2, SSVEP S/N ratio P4, O1, O2). Then the correlation of three variables sets, canonical correlation analysis was conducted. Results: The results showed a significant correlation between visual fatigue and physiological measures. However, different variables of visual fatigue were highly correlated to respective HF/LF ratio and to ERP latency(O2). Conclusion: Response time was highly correlated to ERP latency(O2) while the subjective evaluation was to HF/LF ratio. Application: This study may provide the most significant variables for the quantitative evaluation of visual fatigue using HF/LF ratio and ERP latency based human performance and subjective fatigue.