• Title/Summary/Keyword: physiological metabolism

Search Result 500, Processing Time 0.028 seconds

A Study on the Bioavailability of Organic Ca in Growing Rats (성장기 흰쥐에서 유기태 칼슘의 체내 이용성 연구)

  • Park, Mi-Na;Cho, Su-Jung;Kim, Hee-Kyong;Kim, Jae-Hong;Kim, Min-Ho;Kim, Wan-Sik;Lee, Yeon-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.1
    • /
    • pp.87-94
    • /
    • 2012
  • We evaluated the bioavailability of a novel organic Ca supplement chelated with milk protein (CaMP) in growing rats and compared it with those of Ca carbonate and Ca citrate. Four-week-old male rats were divided into six groups (n=6/group) and fed AIN-93G-based experimental diets containing three Ca sources, Ca carbonate, Ca citrate, and CaMP at two levels, normal (0.5%, w/w) and high (1.5%, w/w), for 6 weeks. Growth, mineral contents of serum, Ca content and breaking force of femur, and Ca absorption were measured. There were no significant differences in weight gain or food intake, but food efficiency ratio (FER) of CaMP in the high Ca group was higher than those of other groups. Ca and P concentrations in serum were within normal range in all experimental rats. There was no difference in Ca content of the femur among all of the groups. Although there was no statistical significance in bone breaking force of the femur among the groups, the CaMP groups had a higher breaking force compared to other groups. Further, Ca absorption rate significantly increased in the CaMP groups (p<0.05). These results demonstrate that the CaMP supplement did not exhibit any negative effect on growth or Ca metabolism of the rats. Therefore, CaMP can be recommended as a good Ca supplement with regard to bone metabolism and Ca bioavailability.

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.

Relationships between Insensible Perspiration and Thermo Physiological Factors during Wearing Seasonal Clothing Ensembles in Comfort (쾌적한 상태에서 계절별 의복을 착용하고 있는 동안 불감증설과 온열 생리 요소들 간의 관련성)

  • Lee, Joo-Young;Choi, Jeong-Wha;Park, Joon-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.12
    • /
    • pp.1700-1709
    • /
    • 2007
  • The purpose of this study was to examine the relationships between thermo-physiological factors and the insensible loss of body weight(IL) of resting women wearing seasonal comfortable clothing. Air temperature was maintained at a mean of 22.5, 24.7, and 16.8 for spring/fall, summer and winter, respectively. We selected a total of 26 clothing ensembles(8 ensembles for spring/fall, 7 ensembles for summer, and 11 ensembles for winter). The results showed that 1) IL was $19{\pm}5g{\cdot}m^{-2}{\cdot}hr$ for spring/fall environment, $21{\pm}5g{\cdot}m^{-2}{\cdot}hr$ for summer, $18{\pm}6{\cdot}m^{-2}{\cdot}hr$ for winter(p<.001). 2) Insensible water loss through respiratory passage(IWR) showed the reverse tendency to IL. IWR was $6{\pm}1g{\cdot}m^{-2}{\cdot}hr$ for winter and $5{\pm}1g{\cdot}m^{-2}{\cdot}hr$ for summer. This difference was significant(p<.001). 3) The proportion of IWR out of whole insensible water loss(IW), had a mean of the mean 28% for summer and 38% for winter(p<.001). 4) In comfort, the heat loss by IW out of heat production had a mean of 25% for spring/fall, 27% for summer, and 23% for winter. 5) There was a weak negative correlation between It and clothing insulation/body surface area covered by clothing. 6) There were significant correlations between IL and air temperature$(T_a)$, air humidity$(H_a)$, energy metabolism, ventilation, mean skin temperature $\={T}_{sk})$ and clothing microclimate humidity$(H_{clo})$. However, the coefficients were less than 0.5. In conclusion, there were weak relationships between the IL and thermo-physiological factors. However, when subjects rested in thermal comfort, the IL was maintained in a narrow range even though the clothing insulation and air temperature were diverse.

Effects of Maternal Genetic Potential and Parity with Pre- and Postpartum on Body Weights, Body Condition Score and Blood Metabolites in Hanwoo Cows (한우 암소의 유전능력과 산차에 따른 분만 전?후 체중, Body Condition Score 및 혈중 대사물질의 변화)

  • 권응기;조영무;최연호;박병기;정학재;최낙진;안병석;김종복
    • Journal of Animal Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.881-888
    • /
    • 2006
  • This study was conducted to investigate effects of maternal genetic potential and parity with pre- and postpartum periods on body weights, body condition score (BCS) and blood metabolites in relation to physiological stress and nutritional metabolism in Hanwoo cows. Also, this study was designed to develop effective husbandry technique for Hanwoo cows concerning of pre- and postpartum periods, and to get basic data for it. Forty five cows were allocated into two groups, 24 cows with high maternal genetic potentials and 21 cows with low maternal genetic potentials. The average parity of experimental cows with high and low maternal genetic potentials were 2.83±1.63 and 3.00±1.77, respectively. The growth performances such as body weights, average daily gain (ADG) and BCS were not different between two groups regardless of maternal genetic potential. However, pre- and postpartum periods had effects on the growth performances (p<0.05). Parity had no effects on ADG and BCS (p>0.05), but effect on body weight of cows (p<0.05). The metabolites of physiological stress such as neutrophil, hematocrit and cortisol, and nutritional metabolites such as albumin, blood urea nitrogen (BUN), triglyceride, and non-esterified fatty acid (NEFA) concentrations in blood of cows were affected by pre- and postpartum periods in a large scale, while those were partially affected by maternal genetic potential. However, among the metabolites in blood, only neutrophil and triglylceride concentrations were affected by different parity of cows. Therefore, the present study suggests that nutritional intake and digestion are affected by physiological stress due to the parturition, and it should need to consider different husbandry technique based on the maternal genetic potential, and pre- and postpartum periods of cows.

Effect of Water Extract of Aloe in RANKL-induced Osteoclast Differentiation (파골세포 분화에 미치는 노회(蘆會) 추출물의 효과)

  • Lee, Jeong-Hugh;Lee, Myeung-Su;Chae, Soo-Uk;Kim, Ha-Young;Moon, Seo-Young;Jeon, Byung-Hoon;Cho, Hae-Joong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.6
    • /
    • pp.1008-1013
    • /
    • 2011
  • Osteoporosis is the leading underlying cause of fractures, particularly in postmenopausal women, due to the loss of estrogen-mediated suppression of bone resorption. More than 50% of adults 50 years of age or older are estimated to have osteoporosis. Osteoclast which is main target for treatment of osteoporosis is originated from hematopoietic cell line. Aloe has been widely used in worldwide country as a coadjuvant medicine. Extracts of the leaves of Aloe have been used in condition to improve dermatologic problem such as seborrheic dermatitis, aphthous stomatitis, xerosis, lichen planus and has been known to exert anti-inflammatory, anti-oxidant and anti-tumor effects. However, despite the popularity of aloe as a plant food supplements, the evaluation of its efficacy as a possible therapeutic option for osteoporosis remains scarce. Thus, we evaluated the effect of Aloe on receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. Here we found that Aloe significantly inhibited osteoclast differentiation induced by RANKL. Aloe suppressed the activation of p38 pathway and $NF{\kappa}B$ in bone marrow macrophages (BMMs) treated with RANKL. Also, Aloe significantly inhibited the mRNA expression of c-Fos, tartrate-resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), nuclear factor of activated T cells (NFAT)c1 and cathepsin K in BMMs treated with RANKL. Particularly, Aloe greatly inhibited the protein expression of c-fos and NFATc1. Taken together, our results suggested that Aloe may be useful tool for treatment of osteoporosis by inhibition of osteoclast differentiation.

Dietary Tea Catechin Inclusion Changes Plasma Biochemical Parameters, Hormone Concentrations and Glutathione Redox Status in Goats

  • Zhong, Rongzhen;Xiao, Wenjun;Ren, Guopu;Zhou, Daowei;Tan, Chuanyan;Tan, Zhiliang;Han, Xuefeng;Tang, Shaoxun;Zhou, Chuanshe;Wang, Min
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1681-1689
    • /
    • 2011
  • The beneficial effects of tea catechins (TCs) are related not only to their antioxidant potential but also to the improvement of animal meat quality. In this study, we assessed the effects of dietary TC supplementation on plasma biochemical parameters, hormone responses, and glutathione redox status in goats. Forty Liuyang goats were randomly divided into four equal groups (10 animals/group) that were assigned to four experimental diets with TC supplementation at 4 levels (0, 2,000, 3,000 or 4,000 mg TC/kg DM feed). After a 60-day feeding trial, all goats were slaughtered and sampled. Dietary TC treatment had no significant effect on blood biochemical parameters, however, low-density lipoprotein cholesterol (p<0.001), triglyceride (p<0.01), plasma urea nitrogen (p<0.01), and glucose (p<0.001) decreased and total protein (p<0.01) and albumin (p<0.05) increased with the feeding time extension, and day 20 was the turning point for most of changes. Interactions were found in glutathione (p<0.001) and the ratio of reduced and oxidized glutathione (p<0.05) in whole blood between treatment and feeding time. Oxidized glutathione in blood was reduced (p<0.05) by 2,000 mg TC/kg feed supplementation, and a similar result was observed in longissimus dorsi muscle. Though plasma glutathione peroxidase (p<0.01) and glutathione reductase (p<0.05) activities were affected by treatment and feeding time interactions, and glutathione S-transferases activity increased with feeding day extension, no changed values appeared in longissimus dorsi muscle. In conclusion, dietary TC supplementation affected the concentrations of some blood metabolites and accelerated GSH depletion in the blood of goats. In terms of less high-density lipoprotein cholesterol, the highest insulin and IGF-I concentrations, the highest ratio of reduced and oxidized glutathione in plasma, the dosage of 2,000 mg TC/kg feed might be desirable for growing goats to prevent glutathione depletion and keep normal physiological metabolism.

Correlation between blood, physiological and behavioral parameters in beef calves under heat stress

  • Kim, Won Seob;Lee, Jae-Sung;Jeon, Seung Woo;Peng, Dong Qiao;Kim, Young Shin;Bae, Mun Hee;Jo, Yong Ho;Lee, Hong Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.6
    • /
    • pp.919-925
    • /
    • 2018
  • Objective: The performance, health, and behaviour of cattle can be strongly affected by climate. The objective of this study was to determine the effect of heat stress on blood parameters, blood proteins (haptoglobin [Hp]; heat shock protein 70 [HSP70]), rectal temperature (RT), heart rate (HR) and rumination time in Korean native beef calves. Methods: Thirty-two Korean native beef calves were randomly assigned to 8 groups with 4 animals per group. They were kept in environmental condition with temperature-humidity index (THI) ranging from 70.01 to 87.72 in temperature-humidity controlled chamber for 7 days. Results: Their HR, RT, and serum cortisol and HSP70 levels were increased (p<0.05) in high THI compared to those at low THI. But, serum Hp level was decreased (p<0.05) in high THI compared to these at low THI. In addition, HR, RT, serum cortisol and HSP70 were positively correlated with THI ($R^2=0.8368$, p<0.01; $R^2=0.6162$, p<0.01; $R^2=0.581$, p<0.01; $R^2=0.2241$, p = 0.0062, respectively). There was also positive association between HR and cortisol ($R^2=0.4697$, p<0.01). Similarly, RT and cortisol were positively associated ($R^2=0.4581$, p<0.01). But, THI and HR were negatively correlated with Hp ($R^2=0.2157$, p = 0.02; $R^2=0.3362$, p = 0.003). Hematology and metabolites results were different among treatment groups. Standing position was higher (p<0.05) in the high THI group compared to that in the low THI group. Conclusion: Based on these results, it can be concluded that HR, RT, blood parameters (Cortisol, HSP70, Hp) and standing position are closely associated with heat stress. These parameters can be consolidated to develop THI chart for Korean native beef calves.

Association of Insulin-Like Growth Factor-I (IGF-I) Gene Polymorphism with Serum IGF-I Concentration and Body Weight in Korean Native Ogol Chicken

  • Seo, D.S.;Yun, J.S.;Kang, W.J.;Jeon, G.J.;Hong, K.C.;Ko, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.7
    • /
    • pp.915-921
    • /
    • 2001
  • IGF-I is involved in the regulation of growth and differentiation in mammals, but its role as a modulator of growth and metabolism in poultry is poorly understood. And, no studies have so far been reported for the comparison between serum IGF-I concentration and body growth in the egg type or the dual purposes (meat and egg type) chicken including the Korean Native Ogol Chicken (KNOC). Therefore, in order to improve the body growth and meat production of the KNOC, this study was conducted for the identification of the polymorphism of IGF-I gene and for its possible association with both body weight and IGF-I concentration. The RFLP patterns for IGF-I gene were identified by the PstI restriction enzyme. The frequencies of +/+, +/-, and -/- genotype were 16.9%, 51.7%, and 31.4%, respectively. Any statistical significance was not observed in all variations except for sex variation (p<0.01) by covariate quadratic model. The significant effect of the IGF-I genotype on body weight by sex indicates that there are different physiological characteristics in gender. Although the body weights of male KNOCs in most ages were not significant, there was a tendency of KNOCs with +/+ IGF-I genotype to be heavier than those with any other genotypes. But all IGF-I genotypes in female did not influence on body weight. The ANOYA revealed no significant effects of IGF-I genotypes on serum IGF-I concentration but sex effect was highly significant on the IGF-I concentration at 20 and 40 weeks (p<0.01). Although the +/+ genotype, in gender, tended to express a higher IGF-I concentration than the other genotypes at all ages in males, a statistical difference among the genotypes was not found except for 60 weeks (p<0.05). Furthermore, since body weight and IGF-I genotypes are associated, it is possible to improve KNOC to a meat type breed if a continuous selection can be made for the body weight and/or IGF-I traits.

Ontogenetic Expression of Lpin2 and Lpin3 Genes and Their Associations with Traits in Two Breeds of Chinese Fat-tailed Sheep

  • Jiao, Xiao-Li;Jing, Jiong-Jie;Qiao, Li-Ying;Liu, Jian-Hua;Li, Liu-An;Zhang, Jing;Jia, Xia-Li;Liu, Wen-Zhong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.333-342
    • /
    • 2016
  • Lipins play dual function in lipid metabolism by serving as phosphatidate phosphatase and transcriptional co-regulators of gene expression. Mammalian lipin proteins consist of lipin1, lipin2, and lipin3 and are encoded by their respective genes Lpin1, Lpin2, and Lpin3. To date, most studies are concerned with Lpin1, only a few have addressed Lpin2 and Lpin3. Ontogenetic expression of Lpin2 and Lpin3 and their associations with traits would help to explore their molecular and physiological functions in sheep. In this study, 48 animals with an equal number of males and females each for both breeds of fat-tailed sheep such as Guangling Large Tailed (GLT) and Small Tailed Han (STH) were chosen to evaluate the ontogenetic expression of Lpin2 and Lpin3 from eight different tissues and months of age by quantitative real-time polymerase chain reaction (PCR). Associations between gene expression and slaughter and tail traits were also analyzed. The results showed that Lpin2 mRNA was highly expressed in perirenal and tail fats, and was also substantially expressed in liver, kidney, reproductive organs (testis and ovary), with the lowest levels in small intestine and femoral biceps. Lpin3 mRNA was prominently expressed in liver and small intestine, and was also expressed at high levels in kidney, perirenal and tail fats as well as reproductive organs (testis and ovary), with the lowest level in femoral biceps. Global expression of Lpin2 and Lpin3 in GLT both were significantly higher than those in STH. Spatiotemporal expression showed that the highest levels of Lpin2 expression occurred at 10 months of age in two breeds of sheep, with the lowest expression at 2 months of age in STH and at 8 months of age in GLT. The greatest levels of Lpin3 expression occurred at 4 months of age in STH and at 10 months of age in GLT, with the lowest expression at 12 months of age in STH and at 8 months of age in GLT. Breed and age significantly influenced the tissue expression patterns of Lpin2 and Lpin3, respectively, and sex significantly influenced the spatiotemporal expression patterns of Lpin3. Meanwhile, Lpin2 and Lpin3 mRNA expression both showed significant correlations with slaughter and tail traits, and the associations appear to be related with the ontogenetic expression as well as the potential functions of lipin2 and lipin3 in sheep.

Expression of Leptin and Its Receptor in Rat Ovary (흰쥐 난소내 Leptin 및 Leptin 수용체의 발현)

  • 김명신;양현원;권혁찬;황경주;윤현숙;박금자;김세광;윤용달
    • Development and Reproduction
    • /
    • v.2 no.2
    • /
    • pp.173-178
    • /
    • 1998
  • Leptin, the product of the obese gene, is produced by adipose tissue and is known to be a hormone concerned with regulation of appetite and metabolism. Recent reports have shown that leptin is associated not only with obesity but also with female reproduction, but it has not yet been ascertained whether leptin acts directly on the ovaries or indirectly via the hypothalamus or pituitary pathway. The object of this study is to determine the expression of leptin and its receptor in the ovaries of 3 and 8 weeks old rats by immunohistochemistry and RT-PCR. In the ovaries of 3 and 8 weeks old rats, leptin was stained in the theca cells and portions of granulosa cells of atretic follicles, whereas leptin receptors was stained in interstitial cells and ova of preantral follicles. The RT-PCR results showed that leptin receptor mRNA was expressed in the ovaries of both immature and adult rats, while leptin mRNA was not. In conclusion, leptin mRNA was not expressed in the ovaries, however, leptin was detected by immunohistochemistry. Compared to leptin itself, leptin receptors in the ovaries were ascertained by both RT-PCR and immunohistochemistry. These results suggest that leptin is related to the regulation of the physiological functions of the ovaries.

  • PDF