• Title/Summary/Keyword: physiological markers

Search Result 122, Processing Time 0.025 seconds

Phenotypic and genotypic screening of rice accessions for salt tolerance

  • Reddy, Inja Naga Bheema Lingeswar;Kim, Sung-Mi;Yoon, In Sun;Kim, Beom-Gi;Kwon, Taek-Ryoun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.188-188
    • /
    • 2017
  • Rice (Oryza sativa L.) is one of the major crops that is seriously impacted by global soil salinization. Rice is among those crops where most of the high-yielding cultivars are highly sensitive to salinity. The key to a plant survival under NaCl salt stress is by maintaining a high $K^+/Na^+$ ratio in its cells. Selection for salinity tolerance genotypes of rice based on phenotypic performance alone is less reliable and will delay in progress in breeding. Recent advent of molecular markers, microsatellites or simple sequence repeats (SSRs) were used to find out salt tolerant rice genotypes. In the current experiment phenotyping and genotyping studies were correlated to differentiate different rice accessions for salinity tolerance. Eight rice accessions along with check plant Dongjin were screened by physiological studies using Yoshida solution with 50mM NaCl stress condition. The physiology studies identified four tolerant and four susceptible accessions based on their potassium concentration, sodium concentration, $K^+/Na^+$ ratio and biomass. 17 SSR markers were used to evaluate these rice accessions for salt tolerance out of which five molecular markers were able to discriminate tolerant accessions from the susceptible accessions. Banding pattern of the accessions was scored comparing to the banding pattern of Dongjin. The study identifies accessions based on their association of $K^+/Na^+$ ratio with molecular markers which is very reliable. These markers identified can play a significant role in screening large set of rice accessions for salt tolerance; these markers can be utilized to improve salt tolerance of commercial rice varieties with marker-assisted selection (MAS) approach.

  • PDF

Somatic Embryogenesis: Morphogenesis, Physiology, Biochemistry and Molecular Biology

  • Thorpe, Trevor A.
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.245-258
    • /
    • 2000
  • Somatic embryogenesis has become a major tool in the study of plant embryology, as it is possible in culture to manipulate cells of many plant species to produce somatic embryos in a process that is remarkably similar to zygotic embryogenesis. Traditionally, the process has been studied by an examination of the ex vitro factors which influence embryo formation. Later structural, physiological and biochemical approaches have been applied. Host recently, molecular tools are being used. Together, these various approaches are giving valuable information on the process. This article gives an overview of somatic embryogenesis by reviewing information on the morphogenesis, physiology, biochemistry and molecular biology of the process. Topics covered include a brief description of the factors involved in the production of embryogenic cells. Carrot cell suspension is most commonly used, and the development of a high frequency and synchronous system is outlined. At the physiological and biochemical lev-els various topics, including the reactivation of the cell cycle, changes in endogenous growth regulators, amino acid, polyamine, DNA, RNA and protein metabolism, and embryogenic factors in conditioned medium are all discussed. Lastly, recent information on genes and molecular markers of the embryogenic process are outlined. Somatic embryogenesis, the best example of totipotency in plant cells, is not only an important tool in studies in basic biology, but is potentially of equal significance in the micropropagation of economically important plants.

  • PDF

Genetic Diversity of Rice Collections using Subspecies-specific STS Markers (아종특이적 STS 마커를 이용한 벼 품종의 유전다양성 분석)

  • Kim, Bong-Song;Jiang, Wenzhu;Koh, Hee-Jong
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.101-105
    • /
    • 2009
  • Rice (Oryza sativa L.), the world's most important crop, is usually classified into ssp. indica and japonica based on morpho-physiological traits. In the previous study, we have developed subspecies-specific STS markers (SS markers) to readily discriminate between indica and japonica in O. sativa. In this study, we employed SS markers to investigate the genomic inclination of worldwide collections of O. sativa. A total of 320 varieties were divided into two groups with 63 SS markers. Namely, they formed two distinctive groups, indica and japonica, as expected by their geographic origin. The population structure analysis revealed that the variability of genetic background was greater in indica than in japonica. Some of them, however, exhibited intermediate genomic inclination between indica and japonica. These results are in general agreement with the previous studies, suggesting that SS markers are powerful tools for both determination of subspecies genome and assessment of genetic diversity in rice.

Molecular Marker Development for the Rapid Differentiation of Black Rot Causing Xanthomonas campestris pv. campestris Race 7

  • Yeo-Hyeon Kim;Sopheap Mao;Nihar Sahu;Uzzal Somaddar;Hoy-Taek Kim;Masao Watanabe;Jong-In Park
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.494-503
    • /
    • 2023
  • Xanthomonas campestris pv. campestris (Xcc) is a plant pathogen of Brassica crops that causes black rot disease throughout the world. At present, 11 physiological races of Xcc (races 1-11) have been reported. The conventional method of using differential cultivars for Xcc race detection is not accurate and it is laborious and time-consuming. Therefore, the development of specific molecular markers has been used as a substitute tool because it offers an accurate and reliable result, particularly a quick diagnosis of Xcc races. Previously, our laboratory has successfully developed race-specific molecular markers for Xcc races 1-6. In this study, specific molecular markers to identify Xcc race 7 have been developed. In the course of study, whole genome sequences of several Xcc races, X. campestris pv. incanae, X. campestris pv. raphani, and X. campestris pv. vesicatoria were aligned to identify variable regions like sequence-characterized amplified regions and insertions and deletions specific to race 7. Primer pairs were designed targeting these regions and validated against 22 samples. The polymerase chain reaction analysis revealed that three primer pairs specifically amplified the DNA fragment corresponding to race 7. The obtained finding clearly demonstrates the efficiency of the newly developed markers in accurately detecting Xcc race 7 among the other races. These results indicated that the newly developed marker can successfully and rapidly detect Xcc race 7 from other races. This study represents the first report on the successful development of specific molecular markers for Xcc race 7.

Trends in System-level Research on Quality Control of Complex Herbal Formulation (복합 처방 품질 관리를 위한 시스템 차원의 연구 동향)

  • Lee, Doo Suk;Kim, Young Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.6
    • /
    • pp.397-401
    • /
    • 2016
  • The quality control is a fundamental procedure for the standardization of herbal medicine to guarantee the consistency of efficacy and safety. For a long time, the quality analysis of herbal medicine has been largely dependent on the routine sensory evaluation, such as taste, smell, color, and shape. However, with the recent development of analytical instruments, various scientific approaches have been introduced in this field. On the basis of the theory that the biological activities of herbal medicine are mainly contributed by its chemical compositions, several types of chemical markers have been suggested for the quality evaluation. In addition to the analytical methods for the specific marker compound(s), including analytical marker and active marker, recently, chemical fingerprinting, a method comparing the chromatographic pattern of the whole chemical components, has been developed and widely accepted as a reliable approach for the quality control of herbal medicine. Moreover, in order to exactly understand the relationship between complex compounds and their holistic biological activities in herbal medicine, unique strategies, such as "BECCs (bioactive equivalent combinatorial components)" and "PhytomicsQC" have been established. In this article, we give an overview of the several categories of chemical markers and the recent research trends for the quality evaluation of herbal medicine.

Association of selected gene polymorphisms with thermotolerance traits in cattle - A review

  • Hariyono, Dwi Nur Happy;Prihandini, Peni Wahyu
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1635-1648
    • /
    • 2022
  • Thermal stress due to extreme changes in the thermal environment is a critical issue in cattle production. Many previous findings have shown a decrease in feed intake, milk yield, growth rate, and reproductive efficiency of cattle when subjected to thermal stress. Therefore, selecting thermo-tolerant animals is the primary goal of the efficiency of breeding programs to reduce those adverse impacts. The recent advances in molecular genetics have provided significant breeding advantages that allow the identification of molecular markers in both beef and dairy cattle breeding, including marker-assisted selection (MAS) as a tool in selecting superior thermo-tolerant animals. Single-nucleotide polymorphisms (SNPs), which can be detected by DNA sequencing, are desirable DNA markers for MAS due to their abundance in the genome's coding and non-coding regions. Many SNPs in some genes (e.g., HSP70, HSP90, HSF1, EIF2AK4, HSBP1, HSPB8, HSPB7, MYO1A, and ATP1A1) in various breeds of cattle have been analyzed to play key roles in many cellular activities during thermal stress and protecting cells against stress, making them potential candidate genes for molecular markers of thermotolerance. This review highlights the associations of SNPs within these genes with thermotolerance traits (e.g., blood biochemistry and physiological responses) and suggests their potential use as MAS in thermotolerant cattle breeding.

Adenine Inhibits B16-F10 Melanoma Cell Proliferation

  • Silwal, Prashanta;Park, Seung-Kiel
    • Biomedical Science Letters
    • /
    • v.26 no.3
    • /
    • pp.179-185
    • /
    • 2020
  • Adenine, a purine base, is a structural component of essential biomolecules such as nucleic acids and adenine nucleotides. Its physiological roles have been uncovered. Adenine suppresses IgE-mediated allergy and LPS-induced inflammation. Although adenine is known to inhibit lymphocyte proliferation, the effect of adenine to melamoma cells is not reported. Here, we investigated the growth inhibitory effects of adenine on B16-F10 mouse melanoma cells. Adenine suppressed the proliferation of B16-F10 cells in dose-dependent manner with the maximal inhibitory dose of 2 mM. Adenine treatment induced cell death molecular markers such as PARP and caspase 3 cleavages. Pan-caspase inhibitor z-VAD dramatically rescued the cell death molecular markers, cell proliferation recovered marginally. These results provide the possibility of adenine to be used as an anti-tumor agent.

Morphological and Genetic Characterization of Penicillium spp. associated with post - harvest decay of fruits. (oral)

  • Oh, S.Y.;Yu, S.H.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.115.1-115
    • /
    • 2003
  • Post-harvest decay, caused by Penicillium spp. is a serious problem of fruits worldwide. Morphological characteristics and molecular markers were used to characterize 22 Penicillium isolates from apples, 18 isolates from pears, 60 from oranges and 18 from grapes and 23reference isolates representing related Penicillium spp. to assess their diversity and resolve their taxonomy. Based on morphological and physiological characteristics, the isolates were grouped as identical or very similar to P. digitatum, P. italicum, P. ulaiense or very similar to P. crustosum, P. expansum, P. solitum and unidentified Penicillium spp. Based on sequence comparisons of ITS region, variable site were presented within and among the species, but there variation were not correlated with the species. Cluster analyses of AP-PCR fragment patterns using UP and L45 primer and the -tubulin gene sequence, the Penicillium species were segregated into distinct groups. Particularly. the -tubulin partial sequence data provided support for species concepts based on morphological and physiological characteristics.

  • PDF

Genetic diversity and population structure between natural and cultivated populations of sea lettuce, Enteromorpha prolifera, in Korea revealed by RAPD markers

  • Chang, Hyo-Jae;Huh, Man-Kyu;Huh, Hong-Wook;Lee, Bok-Kyu
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.279-280
    • /
    • 2003
  • Although it has been known though many morphological and physiological studies, its genetic diversity and population structure have not yet been investigated in this species. Therefore, detailed studies, in particular at the DNA level, on genetic diversity of natural populations of wild sea lettuce, and genetic relationships between natural sea lettuce and cultivated sea lettuce are necessary from the viewpoint of plant evolution. (omitted)

  • PDF

Identification and validation of putative biomarkers by in silico analysis, mRNA expression and oxidative stress indicators for negative energy balance in buffaloes during transition period

  • Savleen Kour;Neelesh Sharma;Praveen Kumar Guttula;Mukesh Kumar Gupta;Marcos Veiga dos Santos;Goran Bacic;Nino Macesic;Anand Kumar Pathak;Young-Ok Son
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.522-535
    • /
    • 2024
  • Objective: Transition period is considered from 3 weeks prepartum to 3 weeks postpartum, characterized with dramatic events (endocrine, metabolic, and physiological) leading to occurrence of production diseases (negative energy balance/ketosis, milk fever etc). The objectives of our study were to analyze the periodic concentration of serum beta-hydroxy butyric acid (BHBA), glucose and oxidative markers along with identification, and validation of the putative markers of negative energy balance in buffaloes using in-silico and quantitative real time-polymerase chain reaction (qRT-PCR) assay. Methods: Out of 20 potential markers of ketosis identified by in-silico analysis, two were selected and analyzed by qRT-PCR technique (upregulated; acetyl serotonin o-methyl transferase like and down regulated; guanylate cyclase activator 1B). Additional two sets of genes (carnitine palmotyl transferase A; upregulated and Insulin growth factor; downregulated) that have a role of hepatic fatty acid oxidation to maintain energy demands via gluconeogenesis were also validated. Extracted cDNA (complementary deoxyribonucleic acid) from the blood of the buffaloes were used for validation of selected genes via qRTPCR. Concentrations of BHBA, glucose and oxidative stress markers were identified with their respective optimized protocols. Results: The analysis of qRT-PCR gave similar trends as shown by in-silico analysis throughout the transition period. Significant changes (p<0.05) in the levels of BHBA, glucose and oxidative stress markers throughout this period were observed. This study provides validation from in-silico and qRT-PCR assays for potential markers to be used for earliest diagnosis of negative energy balance in buffaloes. Conclusion: Apart from conventional diagnostic methods, this study improves the understanding of putative biomarkers at the molecular level which helps to unfold their role in normal immune function, fat synthesis/metabolism and oxidative stress pathways. Therefore, provides an opportunity to discover more accurate and sensitive diagnostic aids.