• Title/Summary/Keyword: physics concept

Search Result 219, Processing Time 0.026 seconds

A Study on Minimum Detection Limit of Environmental Radioactivity in HPGe Detector (HPGe 검출기에서 환경방사능측정의 검출하한치에 관한 연구)

  • Jang, Eun-Sung
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.1
    • /
    • pp.5-10
    • /
    • 2011
  • Based on basic concept of detection limit, sample measurement time & background measurement time was considered, and MDA values according to background measurement time and sample measurement time in land samples(river soil, surface soil, drinking water, underground water, surface water, pine leaf, mugwort) analysis among environmental samples were compared. Seeing the water sample analysis result, it was shown that most of the samples were not detected, and most of the samples in land specimen analysis showed to be below the detection limit of "Ministry of Education, Science and Technology Announcement Je-2008-28-ho", but $^{137}Cs$ which is one of artificial radioactive nuclide was detected in some samples. It can be traced back to 1950s and 1960s when nuclear tests were carried out in atmosphere and catastrophic Chernobyl atomic power station accident that caused fallouts in the sky, and this is common level of detection that can be observed worldwide. Seeing the result that the $^{134}Cs$(which is a isotope of $^{137}Cs$, and it has relatively short half life) was not detected in all samples, it can be considered it doesn't affect to the operation of atomic power station.

Study on the Temperature Separation Phenomenon in a Vortex Chamber (와류실의 온도 분리 현상에 대한 연구)

  • Ye, A Ran;Zhang, Guang;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.731-737
    • /
    • 2014
  • A vortex chamber is a simple device that separates compressed gas into a high-temperature stream and a low-temperature stream. It is increasing in popularity as a next-generation heat exchanger, but the flow physics associated with it is not yet well understood. In the present study, both experimental and numerical analyses were performed to investigate the temperature separation phenomenon inside the vortex chamber. Static pressures and temperatures were measured using high-sensitivity pressure transducers and thermocouples, respectively. Computational fluid dynamics was applied to simulate 3D unsteady compressible flows. The simulation results showed that the temperature separation is strongly dependent on the diameter of the vortex chamber and the supply pressure at the inlet ports, where the latter is closely related to the viscous work. The previous concept of a pressure gradient wave may not be a reasoning for temperature separation phenomenon inside the vortex chamber.

PSYCHO-PHYSICAL ANALYSIS OF PAPER AND A NEW DESIGN CONCEPT OF PAPER MEDIA FOR THE NEXT CENTURY

  • Fumihiko ONABE
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.209-213
    • /
    • 1999
  • In the society of the 21\ulcorner century under multiphase media conditions, the rapidly glowing electronic media will replace the conventional paper media in a variety of areas. However, if human being still has an affinity for paper media and an instinct for hardcopy from electronic-based text or image, the new market will be created for the paper industry. To what extent the consumer choses paper media for output will depend upon the availability of functions of paper media appealing to human senses; i.e., "sensory functions of paper". As a whole, on-demand type personal as well as business communications will increase in the next century and this trend will lead certainly to a rapidly expanding "contents hardcopy market". The technological progress of the paper industry in the 21\ulcorner century depends upon the market needs for higher products quality and higher efficiency of manufacturing process as well as an endeavour to overcome constraints from forest resource, energy, and environmental issues. Under the conditions with above constraints, the paper media will be polarized into two categories; (1)paper for higher image reproduction capability for original image or text and (2)paper for lower reproduction but with higher appeals for human senses. To cope with these trends, psycho-physical analysis and a sensory engineering approach for developing new paper media is vitally required. Also newly emerged roles of paper physics in the multimedia age is pointed out associated with sensory functions of paper that are not well-understood so far.

Application of TULIP/STREAM code in 2-D fast reactor core high-fidelity neutronic analysis

  • Du, Xianan;Choe, Jiwon;Choi, Sooyoung;Lee, Woonghee;Cherezov, Alexey;Lim, Jaeyong;Lee, Minjae;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1871-1885
    • /
    • 2019
  • The deterministic MOC code STREAM of the Computational Reactor Physics and Experiment (CORE) laboratory of Ulsan National Institute of Science and Technology (UNIST), was initially designed for the calculation of pressurized water reactor two- and three-dimensional assemblies and cores. Since fast reactors play an important role in the generation-IV concept, it was decided that the code should be upgraded for the analysis of fast neutron spectrum reactors. This paper presents a coupled code - TULIP/STREAM, developed for the fast reactor assembly and core calculations. The TULIP code produces self-shielded multi-group cross-sections using a one-dimensional cylindrical model. The generated cross-section library is used in the STREAM code which solves eigenvalue problems for a two-dimensional assembly and a multi-assembly whole reactor core. Multiplication factors and steady-state power distributions were compared with the reference solutions obtained by the continuous energy Monte-Carlo code MCS. With the developed code, a sensitivity study of the number of energy groups, the order of anisotropic PN scattering, and the multi-group cross-section generation model was performed on the keff and power distribution. The 2D core simulation calculations show that the TULIP/STREAM code gives a keff error smaller than 200 pcm and the root mean square errors of the pin-wise power distributions within 2%.

On the Use of Standing Oblique Detonation Waves in a Shcramjet Combustor

  • Fusina, Giovanni;Sislian, Jean P.;Schwientek, Alexander O.;Parent, Bernard
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.671-686
    • /
    • 2004
  • The shock-induced combustion ramjet (shcramjet) is a hypersonic airbreathing propulsion concept which over-comes the drawbacks of the long, massive combustors present in the scramjet by using a standing oblique detonation wave (a coupled shock-combustion front) as a means of nearly instantaneous heat addition. A novel shcramjet combustor design that makes use of wedge-shaped flameholders to avoid detonation wave-wall interactions is proposed and analyzed with computational fluid dynamics (CFD) simulations in this study. The laminar, two-dimensional Navier-Stokes equations coupled with a non-equilibrium hydrogen-air combustion model based on chemical kinetics are used to represent the physical system. The equations are solved with the WARP (window-allocatable resolver for propulsion) CFD code (see: Parent, B. and Sislian, J. P., “The Use of Domain Decomposition in Accelerating the Convergence of Quasihyperbolic Systems”, J. of Comp. Physics, Vol. 179, No. 1,2002, pages 140-169). The solver was validated with experimental results found in the literature. A series of steady-state numerical simulations was conducted using WARP and it was deter-mined by means of thrust potential calculations that this combustor design is a viable one for shcramjet propulsion: assuming a shcramjet flight Mach number of twelve at an altitude of 36,000 m, the geometrical dimensions used for the combustor give rise to an operational range for combustor inlet Mach numbers between six and eight. Different shcramjet flight Mach numbers would require different combustor dimensions and hence a variable geometry system in or-der to be viable.

  • PDF

Free vibration of a rectangular plate with an attached three-degree-of-freedom spring-mass system

  • Febbo, M.;Bambill, D.V.;Rossi, R.E.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.637-654
    • /
    • 2011
  • The present paper studies the variation of the natural frequencies and mode shapes of rectangular plates carrying a three degree-of-freedom spring-mass system (subsystem), when the subsystem changes (stiffness, mass, moment of inertia, location). An analytical approach based on Lagrange multipliers as well as a finite element formulation are employed and compared. Numerically reliable results are presented for the first time, illustrating the convenience of using the present analytical method which requires only the solution of a linear eigenvalue problem. Results obtained through the variation of the mass, stiffness and moment of inertia of the 3-DOF system can be understood under the effective mass concept or Rayleigh's statement. The analysis of frequency values of the whole system, when the 3-DOF system approaches or moves away from the center, shows that the variations depend on each particular mode of vibration. When the 3-DOF system is placed in the center of the plate, "new" modes are found to be a combination of the subsystem's modes (two rotations, traslation) and the bare plate's modes that possess the same symmetry. This situation no longer exists as the 3-DOF system moves away from the center of the plate, since different bare plate's modes enable distinct motions of the 3-DOF system contributing differently to the "new' modes as its location is modified. Also the natural frequencies of the compound system are nearly uncoupled have been calculated by means of a first order eigenvalue perturbation analysis.

A review on thermohydraulic and mechanical-physical properties of SiC, FeCrAl and Ti3SiC2 for ATF cladding

  • Qiu, Bowen;Wang, Jun;Deng, Yangbin;Wang, Mingjun;Wu, Yingwei;Qiu, S.Z.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • At present, the Department of Energy (DOE) in Unite State are directing the efforts of developing accident tolerant fuel (ATF) technology. As the first barrier of nuclear fuel system, the material selection of fuel rod cladding for ATFs is a basic but very significant issue for the development of this concept. The advanced cladding is attractive for providing much stronger oxidation resistance and better in-pile behavior under sever accident conditions (such as SBO, LOCA) for giving more coping time and, of course, at least an equivalent performance under normal condition. In recent years, many researches on in-plie or out-pile physical properties of some suggested cladding materials have been conducted to solve this material selection problem. Base on published literatures, this paper introduced relevant research backgrounds, objectives, research institutions and their progresses on several main potential claddings include triplex SiC, FeCrAl and MAX phase material Ti3SiC2. The physical properties of these claddings for their application in ATF area are also reviewed in thermohydraulic and mechanical view for better understanding and simulating the behaviors of these new claddings. While most of important data are available from publications, there are still many relevant properties are lacking for the evaluations.

Application of mesh-free smoothed particle hydrodynamics (SPH) for study of soil behavior

  • Niroumand, Hamed;Mehrizi, Mohammad Emad Mahmoudi;Saaly, Maryam
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-39
    • /
    • 2016
  • The finite element method (FEM), discrete element method (DEM), and Discontinuous deformation analysis (DDA) are among the standard numerical techniques applied in computational geo-mechanics. However, in some cases there no possibility for modelling by traditional finite analytical techniques or other mesh-based techniques. The solution presented in the current study as a completely Lagrangian and mesh-free technique is smoothed particle hydrodynamics (SPH). This method was basically applied for simulation of fluid flow by dividing the fluid into several particles. However, several researchers attempted to simulate soil-water interaction, landslides, and failure of soil by SPH method. In fact, this method is able to deal with behavior and interaction of different states of materials (liquid and solid) and multiphase soil models and their large deformations. Soil indicates different behaviors when interacting with water, structure, instrumentations, or different layers. Thus, study into these interactions using the mesh based grids has been facilitated by mesh-less SPH technique in this work. It has been revealed that the fast development, computational sophistication, and emerge of mesh-less particle modeling techniques offer solutions for problems which are not modeled by the traditional mesh-based techniques. Also it has been found that the smoothed particle hydrodynamic provides advanced techniques for simulation of soil materials as compared to the current traditional numerical methods. Besides, findings indicate that the advantages of applying this method are its high power, simplicity of concept, relative simplicity in combination of modern physics, and particularly its potential in study of large deformations and failures.

Cultural Tunneling Effect: Conceptual adoption & Application in movie industry

  • Roh, Seungkook
    • Asia Marketing Journal
    • /
    • v.16 no.3
    • /
    • pp.77-100
    • /
    • 2014
  • Many researchers have analyzed the relationship between the financial success patterns of a motion picture and many other factors, such as the production cost, marketing, stars, awards, reviews, genre, and rating. Through these studies, many researchers and investors concluded that big budgets to make a blockbuster movie can serve as an insurance policy to meet their ROI; thus the box office is dominated by blockbuster movies. High-budget blockbuster movies are more likely to receive attention because these movies are more recognizable given their high expenses for production and casting. Therefore, audiences choose blockbusters in an effort to reduce the searching cost and to mitigate the possibility of a regrettable choice. This behavior of consumers, in turn, causes distributors to allocate screens for blockbusters, resulting in "concentration of blockbuster consumption." As such, low-budget films cannot easily become popular due to the lack of distribution. Indeed, low-budget films released on a small number of screens often end up becoming dismal failures. However, there are exceptional examples which are contrary to the general idea in the movie industry that a big budget and showings on a large number of screens can guarantee the success of a movie. Although researchers have attempted to analyze the performances of movies with small budgets, such movies are likely to be regarded as outliers and then be entirely discarded, as they are far from the 'three-sigma' range, especially given that previous research methodologies could not explain the financial success of such unique examples. This study attempts to explain the financial success at the box office of low-budget movies by applying the concept of the tunnel effect in quantum mechanics, as the phenomenon found in the movie industry is similar to a particle's movement in quantum physics. The tunneling effect is a phenomenon by which a particle without enough energy to pass over a potential barrier tunnels through it. Adopting the analogy, this study draws a tunneling probability function and cultural constant to forecast other outliers using the Schrödinger equation. Moreover, the study finds that word-of-mouth creates in the movie industry this phenomenon of finding outliers.

How has 'Hakmun'(學問, learning) become converted into a modern concept? focused on 'gyeogchi'(格致) and 'gungni'(窮理) (학문(學問) 개념의 근대적 변환 - '격치(格致)', '궁리(窮理)' 개념을 중심으로 -)

  • Lee, Haeng-hoon
    • (The)Study of the Eastern Classic
    • /
    • no.37
    • /
    • pp.377-410
    • /
    • 2009
  • In the East Asian Confucianism society, Hakmun was aimed to bring human beings and nature into harmony, and to explore a unity between knowledge and conducts. For example, Neo-Confucianism aspired they could explain the human existence and society through a single concept of Iki(理氣, the basic principles and the atmospheric force of nature). In this philosophy, humanics and natural sciences had not been differentiated at all. The East-West cultural interchanges at the beginning of modernity caused a crack in the traditional academic concepts. Through the Hundred Days of Reform(變法自疆運動, a movement of Strenuous Efforts through Reforming the Law), the Western Affairs Movement(洋務運動) in China, Meiji Restoration(明治維新) in Japan, or Innovation Movements(開化運動) and the Patriotic Enlightenment Movement(愛國啓蒙運動) in Korea, the traditional meanings of Hakmun was degraded while it became a target of the criticism of the enlightenment movements. Accordingly, East Asians' perception of Hakmun rapidly began to change. Although there had been the Silhak(實學, practical science) movement in Korea, which tried to differentiate its conceptualization of Hakmun from that of Neo-Confucianism during the 18th and 19th century, the fundamental shift in meaning occurred with the influx of the modern Western culture. This change converted the ultimate objective of Hakmun as well as its methods and substances. The separation of humanics and natural sciences, rise in dignity of the technological sciences, and subdivision of learning into disciplines and their specialization were accelerated during the Korean enlightenment period. The inflow of the modern western science, humanized thought, and empiricism functioned as mediators in these phase and they caused an irreversible crack in the traditional academic thoughts. Confronting the western mode of knowledge, however, the East Asian intellectuals had to explain their new learning by using traditional terms and concepts; modification was unavoidable when they tried to explain the newly imported knowledge and concepts. This presentation focuses on the traditional concepts of 'gyeogchi'(格致, extending knowledge by investigating things) and 'gungni'(窮理, investigation of principles), pervasively used in philosophy, physics and many other fields of study. These concepts will mark the key point with which to trace changes of knowledge and to understand the way how the concept of Hakmun was converted into a modern one.