Browse > Article
http://dx.doi.org/10.1016/j.net.2019.07.030

A review on thermohydraulic and mechanical-physical properties of SiC, FeCrAl and Ti3SiC2 for ATF cladding  

Qiu, Bowen (Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University)
Wang, Jun (University of Wisconsin-Madison)
Deng, Yangbin (College of Physics and Optoelectronic Engineering, Shenzhen University)
Wang, Mingjun (Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University)
Wu, Yingwei (Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University)
Qiu, S.Z. (Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University)
Publication Information
Nuclear Engineering and Technology / v.52, no.1, 2020 , pp. 1-13 More about this Journal
Abstract
At present, the Department of Energy (DOE) in Unite State are directing the efforts of developing accident tolerant fuel (ATF) technology. As the first barrier of nuclear fuel system, the material selection of fuel rod cladding for ATFs is a basic but very significant issue for the development of this concept. The advanced cladding is attractive for providing much stronger oxidation resistance and better in-pile behavior under sever accident conditions (such as SBO, LOCA) for giving more coping time and, of course, at least an equivalent performance under normal condition. In recent years, many researches on in-plie or out-pile physical properties of some suggested cladding materials have been conducted to solve this material selection problem. Base on published literatures, this paper introduced relevant research backgrounds, objectives, research institutions and their progresses on several main potential claddings include triplex SiC, FeCrAl and MAX phase material Ti3SiC2. The physical properties of these claddings for their application in ATF area are also reviewed in thermohydraulic and mechanical view for better understanding and simulating the behaviors of these new claddings. While most of important data are available from publications, there are still many relevant properties are lacking for the evaluations.
Keywords
ATF; $SiC_f$/SiC cladding; FeCrAl cladding; Ti3SiC2 cladding; Physical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.-H. Chun, S.-W. Lim, B.-D. Chung, W.-J. Lee, Safety evaluation of accidenttolerant FCM fueled core with SiC-coated zircalloy cladding for designbasis-accidents and beyond DBAs, Nucl. Eng. Des. 289 (2015) 287-295.   DOI
2 T. Koyanagi, Y. Katoh, M. Snead, SiC/SiC Cladding Materials Properties Handbook, U.S. Department of Energy-Nuclear Technology Research and Development Advanced Fuels Campaign ORNL/TM-20, 2017.
3 A. Ellison, J. Zhang, J. Peterson, A. Henry, Q. Wahab, J. Bergman, Y.N. Makarov, A. Vorob'ev, A. Vehanen, E. Janzen, High temperature CVD growth of SiC, Mater. Sci. Eng., B 61 (1999) 113-120.   DOI
4 H. Tsou, W. Kowbel, A hybrid PACVD SiC/CVD Si3N4SiC multilayer coating for oxidation protection of composites, Carbon 33 (1995) 1279-1288.   DOI
5 Y. Katoh, K.A. Terrani, Systematic Technology Evaluation Program for SiC/SiC Composite Based Accident-Tolerant LWR Fuel Cladding and Core Structures: Revision 2015, Oak Ridge National Laboratory (ORNL), 2015.
6 D.M. Carpenter, Assessment of Innovative Fuel Designs for High Performance Light Water Reactors, 2006.
7 H. Feinroth, et al., Mechanical strength of CTP Triplex SiC fuel clad tubes after irradiation in MIT research reactor under PWR coolant conditions, Ceram. Eng. Sci. Proc. 30 (10) (2009) 47.   DOI
8 C. Deck, et al., Characterization of SiCeSiC composites for accident tolerant fuel cladding, J. Nucl. Mater. 466 (2015) 667-681.   DOI
9 J.D. Stempien, et al., Characteristics of composite silicon carbide fuel cladding after irradiation under simulated PWR conditions, Nucl. Technol. 183 (2013) 13-29.   DOI
10 D. Kim, et al., Fabrication and measurement of hoop strength of SiC triplex tube for nuclear fuel cladding applications, J. Nucl. Mater. 458 (2015) 29-36.   DOI
11 T. El-Raghy, M.W. Barsoum, A. Zavaliangos, et al., Processing and mechanical properties of Ti3SiC2: II, effect of grain size and deformation temperature, J. Am. Ceram. Soc. 82 (10) (1999) 2855-2860.   DOI
12 Y. Zhou, Z. Sun, Microstructure and mechanism of damage tolerance for $Ti_3SiC_2$ bulk ceramics, Mater. Res. Innov. 2 (6) (1999) 360-363.   DOI
13 M.W. Barsoum, H.I. Yoo, I.K. Polushina, et al., Electrical conductivity, thermopower, and hall effect of $Ti_3AlC_2$, $Ti_4AlN_3$, and $Ti_3SiC_2$, Phys. Rev. B 62 (15) (2000) 10194.   DOI
14 F. Kamil, Fukushima nuclear accident, Decouverte (Paris) 1 (373) (2011) 28-31.
15 J. Carmack, F. Goldner, S.M. Bragg-Sitton, L.L. Snead, Overview of the US DOE accident tolerant fuel development program, in: Proc. 2013 LWR Fuel Performance Meeting/TopFuel, 2013, pp. 15-19.
16 L. Soffer, S. Burson, C. Ferrell, R. Lee, J. Ridgely, Accident Source Terms for Light-Water Nuclear Power Plants. NUREG-1465 6, U.S.NRC, Washington, DC, United States, 1995.
17 F. Goldner, Development Strategy for Advanced LWR Fuels with Enhanced Accident Tolerant, Enhanced Accident Tolerant LWR Fuels National Metrics Workshop 2012, 2012 (Germantown, MD, United States).
18 S. Bragg-Sitton, Development of advanced accident-tolerant fuels for commercial LWRs, Nucl. News 57 (2014) 83.
19 S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature 488 (2012) 294-303.   DOI
20 K.R. Gurney, D.L. Mendoza, Y. Zhou, M.L. Fischer, C.C. Miller, S. Geethakumar, S. dela Rue du Can, High resolution fossil fuel combustion CO2 emission fluxes for the United States, Environ. Sci. Technol. 43 (2009) 5535-5541.   DOI
21 Y.-H. Koo, J.-H. Yang, J.-Y. Park, K.-S. Kim, H.-G. Kim, D.-J. Kim, Y.-I. Jung, K.-W. Song, KAERI's development of LWR accident-tolerant fuel, Nucl. Technol. 186 (2014) 295-304.   DOI
22 Y.I. Jung, S.-H. Kim, J.-Y. Park, Manufacturing process for the metal-ceramic hybrid fuel cladding tube, Trans. Korean Nucl. Soc. (2012) 25-26.
23 A.S. Farle, C. Kwakernaak, S. van der Zwaag, W.G. Sloof, A conceptual study into the potential of $M_{n+1}AX_n$-phase ceramics for self-healing of crack damage, J. Eur. Ceram. Soc. 35 (2015).
24 B. Li, Z. Yang, M. Chu, et al., $Ti_3SiC_2/UO_2$ composite pellets with superior high-temperature thermal conductivity, Ceram. Int. 44 (16) (2018) 19846-19850.   DOI
25 Y.W. Bao, Y.C. Zhou, et al., Mechanical properties of $Ti_3SiC_2$ at high temperature, Acta Metall. Sin. 17 (4) (2004) 465-470.
26 M.W. Barsoum, T. El-Raghy, L.U.J.T. Ogbuji, Oxidation of Ti3SiC2 in air, J. Electrochem. Soc. 144 (7) (1997) 2508-2516.   DOI
27 H. Zhang, V. Presser, C. Berthold, et al., Mechanisms and kinetics of the hydrothermal oxidation of bulk titanium silicon carbide, J. Am. Ceram. Soc. 93 (4) (2010) 1148-1155.   DOI
28 W. Jiang, C.H. Henager Jr., T. Varga, et al., Diffusion of Ag, Au and Cs implants in MAX phase Ti3SiC2, J. Nucl. Mater. 462 (2015) 310-320.   DOI
29 B.A. Pint, K.A. Terrani, M.P. Brady, T. Cheng, J.R. Keiser, High temperature oxidation of fuel cladding candidate materials in steamehydrogen environments, J. Nucl. Mater. 440 (2013) 420-427.   DOI
30 M. Takeda, et al., Effect of hydrogen atmosphere on pyrolysis of cured polycarbosilane fibers, J. Am. Ceram. Soc. 83 (2000) 1063-1069.   DOI
31 H. Ichikawa, Development of high performance SiC fibers derived from polycarbosilane using electron beam irradiation curing-a review, J. Ceram. Soc. Jpn. 114 (2006) 455-460.   DOI
32 T. Ishikawa, et al., High-strength alkali-resistant sintered SiC fibre stable to $2200^{\circ}C$, Nature 391 (1998) 773-775.   DOI
33 Y. Katoh, et al., Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects, J. Nucl. Mater. 448 (2014) 448-476.   DOI
34 C. Sauder, Ceramic matrix composites: nuclear applications, Ceram. Matrix Compos.: Mater. Model. Technol. (2014) 609-646.
35 M. Uchihashi, et al., Development of SiC/SiC composites for nuclear reactor core with enhanced safety, in: International Conference on Nuclear Engineering (ICONE) 2015.23, The Japan Society of Mechanical Engineers, 2015.
36 C.M. Parish, et al., Microstructure and hydrothermal corrosion behavior of NITE-SiC with various sintering additives in LWR coolant environments, J. Eur. Ceram. Soc. 37 (2017) 1261-1279.   DOI
37 J.Y. Park, et al., Long-term corrosion behavior of CVD SiC in 360 C water and $400^{\circ}C$ steam, J. Nucl. Mater. 443 (2013) 603-607.   DOI
38 S. Kondo, M. Lee, T. Hinoki, Y. Hyodo, F. Kano, Effect of irradiation damage on hydrothermal corrosion of SiC, J. Nucl. Mater. 464 (2015) 36-42.   DOI
39 Z. Duan, et al., Current status of materials development of nuclear fuel cladding tubes for light water reactors, Nucl. Eng. Des. 316 (2017) 131-150.   DOI
40 K. Yueh, K.A. Terrani, Silicon carbide composite for light water reactor fuel assembly applications, J. Nucl. Mater. 448 (2014) 380-388.   DOI
41 L.J. Ott, K.R. Robb, D. Wang, Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions, J. Nucl. Mater. 448 (2014) 520-533.   DOI
42 N.M. George, K. Terrani, J. Powers, A. Worrall, I. Maldonado, Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors, Ann. Nucl. Energy 75 (2015b) 703-712.   DOI
43 F. Goldner, Development Strategy for Advanced LWR Fuels with Enhanced Accident Tolerant, Enhanced Accident Tolerant LWR Fuels National Metrics Workshop 2012,Germantown, MD, United States, 2012.
44 J. Wang, M. Mccabe, L. Wu, et al., Accident tolerant clad material modeling by MELCOR: benchmark for SURRY short term station black out, Nucl. Eng. Des. 313 (2017a) 458-469.   DOI
45 J. Wang, H.J. Jo, M.L. Corradini, et al., "Potential recovery actions from a severe accident in a PWR: MELCOR analysis of a station blackout scenario", Nucl. Technol. 204 (1) (2018) 1-14.   DOI
46 J. Wang, H.J. Jo, M.L. Corradini, Accident Tolerant Fuel (ATF) Coating and Cladding Thermal Hydraulic Properties Evaluation by MELCOR YU 1.8.6: Benchmark for SURRY Short Term Station Black Out. 2018 ANS Annual Meeting, 2018. June 17-21, Philadelphia, PA, United States.
47 J. Wang, A. Gurgen, M.L. Corradini, et al., Accident tolerant fuel benchmark calculation by MELCOR and TRACE for a simplified generic pressure water reactor. 2018, in: International Congress on Advances in Nuclear Power Plants, 2018. April.8-11, Charlotte, NC, United States.
48 M.N. Chong, S. Lei, B. Jin, C. Saint, C.W. Chow, Optimisation of an annular photoreactor process for degradation of Congo Red using a newly synthesized titania impregnated kaolinite nano-photocatalyst, Separ. Purif. Technol. 67 (2009) 355-363.   DOI
49 T. Maruyama, et al., Relationship between dimensional changes and the thermal conductivity of neutron irradiated SiC, J. Nucl. Mater. (2004) 329-333.
50 L.L. Snead, Limits on irradiation-induced thermal conductivity and electrical resistivity in silicon carbide materials, J. Nucl. Mater. (2004) 524-529, 329-333.
51 L.L. Snead, et al., Handbook of SiC properties for fuel performance modeling, J. Nucl. Mater. 371 (1) (2007) 329-377.   DOI
52 R.H. Jones, D. Steiner, H.L. Heinisch, G.A. Newsome, H.M. Kerch, Radiation resistant ceramic matrix composites, J. Nucl. Mater. 245 (1997) 87-107.   DOI
53 K.A. Schwetz, in: Handbook of Ceramic Hard Materials, Wiley-VCH Verlag GmbH, 2008, pp. 683-748.
54 N. Miriyala, et al., The mechanical behavior of a Nicalon/SiC composite at room temperature and $1000^{\circ}C$, J. Nucl. Mater. 253 (1998) 1-9.   DOI
55 E. Rohmer, E. Martin, C. Lorrette, Mechanical properties of SiC/SiC braided tubes for fuel cladding, J. Nucl. Mater. 453 (2014) 16-21.   DOI
56 T. Koyanagi, Y. Katoh, Mechanical properties of SiC composites neutron irradiated under light water reactor relevant temperature and dose conditions, J. Nucl. Mater. 494 (2017) 46-54.   DOI
57 Y. Katoh, et al., Thermophysical and mechanical properties of near-stoichiometric fiber CVI SiC/SiC composites after neutron irradiation at elevated temperatures, J. Nucl. Mater. 403 (2010) 48-61.   DOI
58 I. Spitsberg, J. Steibel, Thermal and environmental barrier coatings for SiC/SiC CMCs in aircraft engine applications, Int. J. Appl. Ceram. Technol. (2004) 291-301.
59 G. Newsome, et al., Evaluation of neutron irradiated silicon carbide and silicon carbide composites, J. Nucl. Mater. 371 (2007) 76-89.   DOI
60 P. Hofmann, S.J. Hagen, V. Noack, G. Schanz, L.K. Sepold, Chemical-physical behavior of light water reactor core components tested under severe reactor accident conditions in the CORA facility, Nucl. Technol. 118 (1997) 200-224.   DOI
61 D. Squarer, A. Pieczynski, L. Hochreiter, Effect of debris bed pressure, particle size, and distribution on degraded nuclear reactor core coolability, Nucl. Sci. Eng. 80 (1982) 2-13.   DOI
62 S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, L.L. Snead, Accident tolerant fuels for LWRs: a perspective, J. Nucl. Mater. 448 (2014) 374-379.   DOI
63 K.A. Terrani, S.J. Zinkle, L.L. Snead, Advanced oxidation-resistant iron-based alloys for LWR fuel cladding, J. Nucl. Mater. 448 (2014b) 420-435.   DOI
64 S.J. Zinkle, G. Was, Materials challenges in nuclear energy, Acta Mater. 61 (2013) 735-758.   DOI
65 G. Gonzalez-Doncel, O. Sherby, High temperature creep behavior of metal matri Aluminum SiC composites, Acta Metall. Mater. 41 (1993) 2797-2805.   DOI
66 A. Evans, C. Padgett, R. Davidge, Strength of pyrolytic SiC coatings of fuel particles for high- temperature gas- cooled reactors, J. Am. Ceram. Soc. 56 (1973) 36-41.   DOI
67 M. Ben-Belgacem, V. Richet, K.A. Terrani, Y. Katoh, L.L. Snead, Thermomechanical analysis of LWR SiC/SiC composite cladding, J. Nucl. Mater. 447 (2014) 125-142.   DOI
68 M. Baba, Fukushima accident: what happened? Radiat. Meas. 55 (2013) 17-21.   DOI
69 P.C. Burns, R.C. Ewing, A. Navrotsky, Nuclear fuel in a reactor accident, Science (Washington, D.C.) 335 (2012) 1184-1188.   DOI
70 M. Tonks, D. Schwen, Y. Zhang, P. Chakraborty, X. Bai, B. Fromm, J. Yu, M. Teague, D. Andersson, Assessment of MARMOT: A Mesoscale Fuel Performance Code, Idaho National Laboratory (INL), Idaho Falls, ID, United States, 2015.
71 K. Metzger, T. Knight, R. Williamson, Model of $U_3Si_2$ fuel system using BISON fuel code. Proceedings of the International Congress on Advances in Nuclear Power PlantseICAPP 2014, 2014 (Charlotte, NC, United States).
72 J. Carmack, L. Braase, C. Papesch, D. Hurley, M. Tonks, Y. Zhang, K. Gofryk, J. Harp, R. Fielding, C. Knight, Thermal Properties Measurement Report, Idaho National Laboratory (INL), Idaho Falls, United States, 2015.
73 K. Barrett, K. Ellis, C. Glass, G. Roth, M. Teague, J. Johns, Critical processes and parameters in the development of Accident Tolerant Fuel drop-in capsule irradiation tests, Nucl. Eng. Des. 294 (2015) 38-51.   DOI
74 B. Qiu, et al., A comparative study on preliminary performance evaluation of ATFs under normal and accident conditions with FRAP-ATF code, Prog. Nucl. Energy 105 (2018) 51-60.   DOI
75 T. Nozawa, et al., Determination and prediction of axial/off-axial mechanical properties of SiC/SiC composites, Fusion Eng. Des. 87 (2012) 803-807.   DOI
76 C.K. Ang, et al., Examination of Hybrid Metal Coatings for Mitigation of Fission Product Release and Corrosion Protection of LWR SiC/SiC, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, United States, 2016.
77 H.A. Friggens, D.R. Holmes, Nucleation and growth of magnetite films on Fe in high-temperature water, Corros. Sci. 8 (1968) 871-881.   DOI
78 C.S. Wukusick, J.F. Collins, An iron-chromium-aluminum alloy containing yttrium, Mater. Res. Std. 4 (1964).
79 K.R. Robb, Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents, Oak Ridge National Lab.(ORNL), Oak Ridge, TN, United States, 2015.
80 C.P. Massey, K.A. Terrani, S.N. Dryepondt, et al., Cladding burst behavior of Fe-based alloys under LOCA, J. Nucl. Mater. 470 (2016) 128-138.   DOI
81 F.H. Stott, G.C. Wood, J. Stringer, The influence of alloying elements on the development and maintenance of protective scales, Oxid. Metals 44 (1995) 113-145.   DOI
82 J. Ejenstam, M. Thuvander, P. Olsson, et al., Microstructural stability of Fe-Cr-Al alloys at $450-550^{\circ}C$, J. Nucl. Mater. 457 (2015) 291-297.   DOI
83 Y.B. Deng, Y.W. Wu, B.W. Qiu, et al., Development of a new pellet-clad mechanical interaction (PCMI) model and its application in ATFs, Ann. Nucl. Energy 104 (2017) 146-156.   DOI
84 N.R. Brown, A. Aronson, M. Todosow, R. Brito, K.J. McClellan, Neutronic performance of uranium nitride composite fuels in a PWR, Nucl. Eng. Des. 275 (2014) 393-407.   DOI
85 V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources 114 (2003) 32-53.   DOI
86 M. Farmer, L. Leibowitz, K.A. Terrani, K.R. Robb, Scoping assessments of ATF impact on late-stage accident progression including molten coreeconcrete interaction, J. Nucl. Mater. 448 (2014) 534-540.   DOI
87 H.P. Qu, Y.P. Lang, C.F. Yao, et al., The effect of heat treatment on recrystallized microstructure, precipitation and ductility of hot-rolled Fe-Cr-Al-REM ferritic stainless steel sheets, Mater. Sci. Eng. 562 (2013) 9-16.   DOI
88 K.A. Gamble, T. Barani, D. Pizzocri, et al., An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions, J. Nucl. Mater. 491 (2017) 55-66.   DOI
89 J.M. Schwantes, C.R. Orton, R.A. Clark, Analysis of a nuclear accident: fission and activation product releases from the Fukushima Daiichi nuclear facility as remote indicators of source identification, extent of release, and state of damaged spent nuclear fuel, Environ. Sci. Technol. 46 (2012) 8621-8627.   DOI
90 B.B. Wittneben, The impact of the Fukushima nuclear accident on European energy policy, Environ. Sci. Policy 15 (2012) 1-3.   DOI
91 K. Barrett, S. Bragg-Sitton, D. Galicki, Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study. INL/EXT-12-27090, INL External Report, 2012 (Idaho Falls, ID, United States).
92 B.A. Pint, K.A. Terrani, Y. Yamamoto, L.L. Snead, Material selection for accident tolerant fuel cladding, Metall. Mater. Trans. A 2 (2015) 190-196.
93 J.-Y. Park, I.-H. Kim, Y.-I. Jung, H.-G. Kim, D.-J. Park, B.-K. Choi, High temperature steam oxidation of Al 3 Ti-based alloys for the oxidation-resistant surface layer on Zr fuel claddings, J. Nucl. Mater. 437 (2013b) 75-80.   DOI
94 S. Ray, E. Lahoda, F. Franceschini, Assessment of Different Materials for Meeting the Requirement of Future Fuel Designs, Reactor Fuel Performance Meeting, 2012, pp. 2-6. Paper A.
95 M.C. Teague, B.S. Fromm, M.R. Tonks, D.P. Field, Using coupled mesoscale experiments and simulations to investigate high burn-up oxide fuel thermal conductivity, JOM (J. Occup. Med.) 66 (2014) 2569-2577.
96 N. Kinoshita, K. Sueki, K. Sasa, J.-i. Kitagawa, S. Ikarashi, T. Nishimura, Y.-S. Wong, Y. Satou, K. Handa, T. Takahashi, Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering centraleast Japan, Proc. Natl. Acad. Sci. 108 (2011) 19526-19529.   DOI
97 B.A. Pint, S. Dryepondt, K.A. Unocic, D.T. Hoelzer, Development of ODS FeCrAl for compatibility in fusion and fission energy applications, JOM (J. Occup. Med.) 66 (2014) 2458-2466.
98 Y. Yamamoto, B. Pint, K. Terrani, K. Field, Y. Yang, L. Snead, Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors, J. Nucl. Mater. 467 (2015) 703-716.   DOI
99 G.J. Youinou, R.S. Sen, Impact of accident-tolerant fuels and claddings on the overall fuel cycle: a preliminary systems analysis, Nucl. Technol. 188 (2014) 123-138.   DOI
100 C.H. Henager Jr., W.D. Bennett, A.L. Doherty, E. Fuller, J.S. Hardy, R.P. Omberg, Corrosion Report for the U-Mo Fuel Concept, Pacific Northwest National Laboratory (PNNL), Richland, WA (US), 2014.
101 J. Hu, D. Wolfe, A. Motta, et al., Radiation Tolerance of Multilayer (TiN, TiAlN) Ceramic ATF Coating. 2017 ANS Winter Meeting, Washington, DC, United States, 2017.
102 Y. Zhang, D.S. Aidhy, T. Varga, S. Moll, P.D. Edmondson, F. Namavar, K. Jin, C.N. Ostrouchov, W.J. Weber, The effect of electronic energy loss on irradiationinduced grain growth in nanocrystalline oxides, Phys. Chem. Chem. Phys. 16 (2014a) 8051-8059.   DOI
103 J. Brachet, C. Lorrette, A. Michaux, C. Sauder, I. Idarraga-Trujillo, M. Le Saux, A. Ambard, CEA studies on advanced nuclear fuel claddings for enhanced Accident Tolerant LWRs Fuel (LOCA and beyond LOCA conditions), in: Fontevraud 8, Contribution of Materials Investigations and Operating Experience to LWRs' Safety, Performance and Reliability, 2014. September 15-18, 2014, France, Avignon.
104 K.A. Terrani, et al., Silicon carbide oxidation in steam up to 2 MPa, J. Am. Ceram. Soc. 97 (2014) 2331-2352.   DOI
105 Y. Katoh, et al., Radiation effects in SiC for nuclear structural applications, Curr. Opin. Solid State Mater. Sci. 16 (2012) 143-152.   DOI
106 Kanthal APMT (tube) datasheet. http://kanthal.com/en/products/materialdatasheets/tube/kanthal-apmt/, 2012.
107 B. Jonsson, Q. Lu, D. Chandrasekaran, et al., Oxidation and creep limited lifetime of Kanthal APMT(R), a dispersion strengthened FeCrAlMo alloy designed for strength and oxidation resistance at high temperatures, Oxid. Metals 79 (2013) 29-39.   DOI
108 Z.T. Thompson, K.A. Terrani, Y. Yamamoto, ORNL/TM-2015/, Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys, vol 632, 2015, pp. 1-17.
109 S. Dryepondt, B.A. Pint, E. Lara-Curzio, Creep behavior of commercial FeCrAl foils: beneficial and detrimental effects of oxidation, Mater. Sci. Eng., A (2012) 10-18.   DOI
110 K.A. Terrani, B.A. Pint, Y.J. Kim, et al., Uniform corrosion of FeCrAl alloys in LWR coolant environments, J. Nucl. Mater. 479 (2016) 36-47.   DOI
111 M.W. Barsoum, The $M_{N+1}AX_N$ phases: a new class of solids, Prog. Solid State Chem. 28 (2000) 201-281.   DOI
112 Z. Yanchun, S. Zhimei, S. Jihong, et al., Titanium silicon carbide: a ceramic or a metal, Z Metallkd 91 (2000) 329-334.
113 P. Finkel, M.W. Barsoum, T. El-Raghy, Low temperature dependencies of the elastic properties of Ti 4 AlN 3, Ti 3 Al 1.1 C 1.8, and $Ti_3SiC_2$, J. Appl. Phys. 87 (4) (2000) 1701-1703.   DOI
114 Z. Sun, Y. Zhou, M. Li, Oxidation behaviour of $Ti_3SiC_2$-based ceramic at $900-1300^{\circ}C$ in air, Corros. Sci. 43 (6) (2001) 1095-1109.   DOI
115 R. Radhakrishnan, J.J. Williams, M. Akinc, Synthesis and high-temperature stability of Ti3SiC2, J. Alloy. Comp. 285 (1-2) (1999) 85-88.   DOI
116 Z.M. Sun, H. Hashimoto, Z.F. Zhang, et al., Synthesis and characterization of a metallic ceramic material-Ti3SiC2, Mater. Trans. 47 (1) (2006) 170-174.   DOI