• Title/Summary/Keyword: physico-chemical parameters

Search Result 146, Processing Time 0.044 seconds

Effects of Sediment Harvesting on Bacterial Community Structure (골재채취가 세균군집구조에 미치는 영향)

  • Park, Ji-Eun;Lee, Young-Ok
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2 s.62
    • /
    • pp.172-178
    • /
    • 2006
  • The dynamics of bacterial populations belonging to $\alpha\;\beta\;\gamma-subclass$ proteobacteria, Cytophaga-Flavobacterium (CF) group and sulfate reducing bacteria (SRB) in water column of the middle reaches of Nakdong River depending on sediment harvesting were analyzed by fluorescent in situ hybridization (FISH) at sediment harvesting site (near the Seongju bridge) and non-sediment harvesting site (near the Gumi bridge). In addition, some physico-chemical parameters such as temperature, pH, $chi-\alpha$ and electrical conductivity were measured. Regarding the number of total cell counts, cells stained by DAPI, there were no substantial quantitative differences between both sites, but those fluctuation at sediment Harvesting site was greater. And also the ratios of CFgroup and SRB to total cell counts tend to increase at sediment harvesting site with higher $chl-\alpha$, maybe due to the resuspension of sediment into water column. But the total proportion of all determined bacterial populations to total cell counts were greater at non-sediment harvesting site, compared with those at sediment harvesting site. Since the detectibility of bacteria by FISH depends on their metabolic activity, those lower proportion at the sediment harvesting site implies that sediment harvesting may lead to malfunction of those bacteria respect to nutrient recycling and subsequently negative effects on microbial food web.

Comparative Studies on Static Windrow and Aerated Static Pile Composting of the Mixtures of Cattle Manure and Rice Hulls -I. Variation of Physico-chemical Parameters (우분뇨와 왕겨 혼합물의 퇴비화에서 정치식과 통기퇴적식의 비교연구 -I. 퇴비재료의 이화학적 환경변화)

  • Sohn, Bo-Kyoon;Hong, Ji-Hyung;Park, Keum-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.403-410
    • /
    • 1996
  • Variations of temperature and physicochemical environment during composting of a mixtures(2:1, v/v) of cattle manure and rice hulls(CMR) in two different composting methods, static windrow(SW) and aerated static pile system(ASPS), were monitored for evaluating the efficient composting system in greenhouse. The pH of composting materials increased to around 8.9 initially, then decreased and stabilized slowly to the neutral value. Composting materials in ASPS showed a rapid stabilization in pH value from the 4th week comparing to the speed in SW. Thermophilic stage for ASPS Lasted at 3 week whereas 6 weeks for WS. Required time to get thermophilic zone in compost was shorter in ASPS than in WS. Reduction rate in total carbon(T-C) was higher in ASPS than in WS. Organic matter was reduced more rapidly in ASPS than in SW showing 9 percent difference after the 6th week. Total nitrogen(T-N) increased while composting process, showing 9 percent after 6th week in WS and 1.8 percent after 7th week in ASPS. C/N ratio was stabilized after 6th week showing 17 and 21 level in WS and ASPS each. Quantity of ash and mineral content increased during composting in both system, showing higher content in ASPS. Composting process by intermittent, aerated static pile system in greenhouse had a significant effect on the reduction of required period for composting.

  • PDF

Sorption Kinetics of Hydrophobic Organic Compounds in Wetland Soils (습지 토양에서 소수성 유기화합물질의 흡착 동력학)

  • Park, Je-Chul;Shin, Won-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.295-303
    • /
    • 2003
  • Sorption kinetics of hydrophobic organic compounds (chlorobenzene and phenanthrene) in natural wetland soils was investigated using laboratory batch adsorbers. One -site mass transfer model (OSMTM) and two compartment first-order kinetic model (TCFOKM) were used to analyze sorption kinetics. Analysis of OSMTM reveals that apparent sorption equilibria were obtained within 10 to 75 hours for chlorobenzene and 2 hours for phenanthrene, respectively. For chlorobenzene, the sorption equilibrium time for surface soil was longer than that of deeper soil presumably due to physico-chemical differences between the soils. For phenanthrene, however, no difference in sorption equilibrium time was observed between the soils. As expected from the number of model parameters involved, the three-parameter TCFOKM was better than the two-parameter OSMTM in describing sorption kinetics, The fraction of fast sorption ($f_1$) and the first-order sorption rate constants for fast ($k_1$)and slow ($k_2$) compartments were determined by fitting experimental data to the TCFOKM. The results of TCFOKM analysis indicate that the sorption rate constant in the fast compartment($k_1$) was much greater than that of slow fraction($k_2$) . The fraction of the fast sorption ($f_1$) and the sorption rate constant in the fast compartment($k_1$) were increasing in the order of increasing $k_{ow}$, phenanthrene > chlorobenzene. The first-order sorption rate constants in the fast ($k_1$) and slow ($k_2$) compartments were found to vary from $10^{-0.1}\;to\;-10^{1.0}$ and from $10^{-4}\;to-10^{-2}$, respectively.

Distribution Characteristics of Largemouth Bass (Micropterus salmoides) as an Exotic Species, in Some Medium-to-Large Size Korean Reservoirs and Physico-chemical Water Quality in the Habitats (국내 중대형 인공호에서 외래종인 배스(Micropterus salmoides)의 분포 특성 및 서식지의 이화학적 수질)

  • Kim, Hyun-Mac;Kil, Ji-Hyon;Lee, Eui-Haeng;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.541-550
    • /
    • 2013
  • The objective of this study was to understand the distribution characteristics of largemouth bass as an exotic species in relation to water chemistry. The survey was conducted in 10 reservoirs in Korea that showed different properties in size, location and eutrophic state. Total number of fish species observed in the artificial reservoirs was 52 (13 family) and the relative abundance of the bass was 13% of the total, which is the third dominant species in the whole sample. The relative abundance of bass was the highest in the Pyungtak reservoir (60%), whereas the Daechung reservoir showed the lowest abundance (only 3%). Although no significance difference statistically were founded in the relationship between bass abundance and water quality parameters. The reservoir trophic state showed some relationships. As result, the higher abundance was observed in hypertrophic reservoirs that located in the esturine regions compared to other large and medium reservoirs classified as meso- or eutrphic state. In conclusion, bass distribution in the reservoir ecosystem can not be directly explained by water chemistry only but other environmental factors should be considered.

How are the Spatio-Temporal Distribution Patterns of Benthic Macrofaunal Communities Affected by the Construction of Shihwa Dike in the West Coast of Korea? (시화방조제의 건설은 저서동물군집의 시${\cdot}$공간 분포에 어떠한 영향을 미쳤는가?)

  • HONG Jae-Sang;JUNG Rae-Hong;SEO In-Soo;YOON Kon-Tak;CHOI Byong-Mee;YOO Jae-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.882-895
    • /
    • 1997
  • Changes in the benthic communities have been studied to investigate the environmental effects before and after the construction of Shihwa Dike in the West coast of Korea. It is suggested that sequential changes in macrofaunal assemblages progressed in two sucressional directions. In the Shihwa lake under the influence of organic enrichment. First, the appearance of 'azoic tone' or 'grossly polluted zone' developed in the area of less than 6 m in depth resulted from the severe dissolved oxygen depletion due to the eutrophication from the increased organic loading. Second, the 'polluted zone' characterized by the proliferation of the opportunistic species in organically enriched area, was found in the vicinity of the industrial discharges and nearby fluvial inputs. This benthic community succession in the Shihwa lake seemed to be caused by the various ecological events such as an eutrophication in this organically enriched environment after construction of the dike and other physico-chemical parameters like salinity and dissolved oxygen in the bottom water, which may be influenced by the irregular surface water discharge and dilution by outer seawater inflow through the water gate of the dike. On the other hand, the benthic communities in the outside of the dike showed that the species richness was more than doubled and the abundance increased almost seven times more than that before the dike construction. This may be a typical characteristics of the initial phase in benthic eutrophication, suggesting that an increased organic input area may have been reponsible for this faunal change in the study area.

  • PDF

Effects of Salt, Glucono-${\delta}$-Lactone and High Pressure Treatment on Physico-Chemical Properties of Restructured Pork (소금과 Glucono-${\delta}$-Lactone의 첨가 및 초고압 처리가 재구성 돈육의 이화학적 특성에 미치는 효과)

  • Bong Geun-Pyo;Park Sung-Hee;Kim Jee-Yeon;Ko Se-Hee;Min Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.26 no.2
    • /
    • pp.204-211
    • /
    • 2006
  • This study investigated the effect of salt and glucono-${\delta}$-lactone (GdL) on the cold-set binding of restructured pork washed and pressurized at 200 MPa. Binding strength, PH, water holding capacity (WHC) and color were determined. NaCl improved pH, WHC and binding strength. GdL also increased binding strength while decreased WHC and pH significantly (p<0.05). However, low GdL level combined with NaCl showed high pH and WHC, compared to control. In color, NaCl decreased $L^*$-value with increasing $a^*$-value significantly (p<0.05). In contrast to NaCl, GdL increased $L^*$-value and decreased $a^*$-value. GdL tended to decrease $b^*$-value and significant differences were found when GdL was added above 1%. Pearson's correlation coefficients presented that NaCl had a significant effect on binding strength (0.6632) and lightness (-0.7330) while GdL had a significant correlation with all parameters barring binding strength. The results indicated that under washing and pressure treatments, GdL had a potential effect on cold-set binding with reducing NaCl concentration, especially when low GdL concentration combined with NaCl was added.

Analysis by Environmental Factor of Similar Closed Non-sanitary Landfills (사용종료된 유사비위생 매립지들의 환경인자 분석)

  • Lee, Byungchan;Lee, Minhee;Park, Sangchan;Jeong, Seonki;Han, Yangsu;Yeon, Ikjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.27-33
    • /
    • 2009
  • In this study, it was analysed physical characteristics, TS, moisture, C/N ratio, leaching test, and element analysis in landfill wastes of 10 years old without landfill pretreatment. The Organic material content was 7.2%~23.5% and soil was the main inorganic materials which it's rate was 54.1%~71.0%, in landfill wastes. The results of TS, VS, and moisture were represented 51.5%~68.1%, 23.6%~56.1%, 32.0%~48.4%, respectively. The analysis of hazardous materials did not indicate Hg, $Cr^{+6}$, CN, Organic Phosphorus, TCE and PCE, however the Pb of leaching materials showed 0.023~0.092 mg/L, which was the highest. As the result of the element analysis, C was 47.74%~56.72%, N was 4.09%~9.92%, the C/N ratio was 5.76~12.57 and the result of soils around landfill was the highest heavy material, Pb, 2.465 mg/kg~10.251 mg/kg. The objectives of this paper are to investigate states, stabilization of these closed landfills and to gain suitable data for post-closure care using some parameters through analysis of landfill environment.

  • PDF

Urban Stormwater Runoff Treatment by the RFS (RFS를 이용한 도시유출수처리)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.159-167
    • /
    • 2000
  • In recent years, combined and separated sewer overflows (CSOs, SSOs) have been recognized as a significant pollution problem. To solve this problem a series of experiments were performed in a small scale Rapid Floc Settler (RFS) device to determine its ability in removing micro particles and dissolved materials from polluted waters. The RFS device is a compact physico-chemical wasterwater treatment system. Polyacrylamide (PAM) is used as a coagulant for treating stormwater in the RFS. The results of Jar test showed that PAM could be an excellent coagulant as compared with aluminum sulfate. and ferric chloride. In several experimental conditions, the influence of different variation parameters was tested to measure the efficiency of the RFS. Tests have been carried out with typical CSOs concentrations (50~1.000mg SS/L). The treatment efficiency with regard to SS and COD, which can be obtained at an overflow rate of $130m^3/m^2/day$, are 90% and 80%, respectively. Comparing other sedimentation technologies with RFS, the overflows rate of RFS is ten times faster. The distribution of particle size and number were analyzed. The RFS is suitable for the treatment of CSOs and also the removal of settleable and dissolved materials in urban stormwater runoff.

  • PDF

Distribution characteristics of chemical oxygen demand and Escherichia coli based on pollutant sources at Gwangyang Bay of South Sea in Korea (남해 광양만에서 오염원에 따른 화학적 산소요구량과 대장균의 해역별 분포특성)

  • Baek, SeungHo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3279-3285
    • /
    • 2014
  • This study aimed to understand seasonal and geographical characteristic of chlorophyll-${\alpha}$ (chl-${\alpha}$), COD (chemical oxygen demand) and Escherichia coli at Gwangyang Bay during the period from February 2010 to November 2012. The bay is divided into three different zones based on the pollutant levels and geographical characteristics. During the study periods, water temperature, salinity, Chl. ${\alpha}$, and chemical oxygen demand (COD) varied in the range of $4.68-28.63^{\circ}C$, 1.94-33.84 psu, 0.31-35.10 ${\mu}gL^{-1}$, and 0.70-13.35 $mgL^{-1}$, respectively. Total chl-a concentration were high at the zone I, which can be characterized as a semi-enclosed eutrophic area, and it were low at the zone III, which is influenced by low nutrients of surface warm water current from offshore of the bay. The high concentration of COD was observed at inner bay during the four seasons and the water quality level was kept to be bad condition during spring season at the zone II, which is influenced by Seomjin River water. The highest colony form of E. coli was recorded to be 3550 $cfuL^{-1}$ during summer at station 1 (zone I), whereas it was relatively kept low level during all seasons at the zone III. As a result, the E. coli was correlated with water temperature (r=0.31 p<0.05) and salinity (r=-0.55 p<0.05), implying that those parameters have play an important crucial role in proliferation of E. coli. Consequently, our results indicated that the E. coli can be significantly promoted within pollutant sources including the high nutrients supplied by rive discharge during spring and summer rainy seasons in semi-enclosed area of Gwangyang Bay.

Identifying sources of heavy metal contamination in stream sediments using machine learning classifiers (기계학습 분류모델을 이용한 하천퇴적물의 중금속 오염원 식별)

  • Min Jeong Ban;Sangwook Shin;Dong Hoon Lee;Jeong-Gyu Kim;Hosik Lee;Young Kim;Jeong-Hun Park;ShunHwa Lee;Seon-Young Kim;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.306-314
    • /
    • 2023
  • Stream sediments are an important component of water quality management because they are receptors of various pollutants such as heavy metals and organic matters emitted from upland sources and can be secondary pollution sources, adversely affecting water environment. To effectively manage the stream sediments, identification of primary sources of sediment contamination and source-associated control strategies will be required. We evaluated the performance of machine learning models in identifying primary sources of sediment contamination based on the physico-chemical properties of stream sediments. A total of 356 stream sediment data sets of 18 quality parameters including 10 heavy metal species(Cd, Cu, Pb, Ni, As, Zn, Cr, Hg, Li, and Al), 3 soil parameters(clay, silt, and sand fractions), and 5 water quality parameters(water content, loss on ignition, total organic carbon, total nitrogen, and total phosphorous) were collected near abandoned metal mines and industrial complexes across the four major river basins in Korea. Two machine learning algorithms, linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were used to classify the sediments into four cases of different combinations of the sampling period and locations (i.e., mine in dry season, mine in wet season, industrial complex in dry season, and industrial complex in wet season). Both models showed good performance in the classification, with SVM outperformed LDA; the accuracy values of LDA and SVM were 79.5% and 88.1%, respectively. An SVM ensemble model was used for multi-label classification of the multiple contamination sources inlcuding landuses in the upland areas within 1 km radius from the sampling sites. The results showed that the multi-label classifier was comparable performance with sinlgle-label SVM in classifying mines and industrial complexes, but was less accurate in classifying dominant land uses (50~60%). The poor performance of the multi-label SVM is likely due to the overfitting caused by small data sets compared to the complexity of the model. A larger data set might increase the performance of the machine learning models in identifying contamination sources.