• Title/Summary/Keyword: physically based model

Search Result 251, Processing Time 0.023 seconds

A Numerical Study of the 2-D Cold Flow for a Qubec City Stoker Incinerator (큐벡시 스토커 소각로 2차원 비반응 유동장 수치해석)

  • 박지영;송은영;장동순
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.268-275
    • /
    • 1993
  • A series of parametric investigations are performed in order to resolve the flow characteristic of a Quebec city stoker incinerator. The parameters considered in this study are five internal configurations of the Quebec city stoker itself and its modified ones, primary air velocity, the injection velocity and angle of the secondary air, and the reduction of the stoker exit area. A control-volume based finite-difference method by Patankar together with the power-law scheme is employed for discretization. The resolution of the pressure-velocity coupling is made by the use of SIMPLEC algorithm. The standard, two equation, k-$\varepsilon$ model is incorporated for the closure of turbulence. The size of recirculation region, turbulent viscosity, the mass fraction of the secondary air and pressure drop are calculated in order to analyze the characteristics of flow field. The results are physically acceptable and discussed in detail. The flow field of the Quebec city stoker shows the strong recirculation zone together with the high turbulence intensity over the upper part of the incinerator.

  • PDF

Fault Detection in LDPE Process using Machine Learning Techniques (머신러닝 기법을 활용한 LDPE 공정의 이상 감지)

  • Lee, Changsong;Lee, Kyu-Hwang;Lee, Hokyung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.224-229
    • /
    • 2020
  • We propose a machine learning-based method for proactively detecting faults in LDPE processes and predicting equipment lifespan. It is important to detect and prevent unexpected faults in chemical processes in order to maximize safety and productivity. Since LDPE process is a high-pressure process up to 3,000 kg/㎠g or more, once ESD occurs, it can result in productivity loss due to increased maintenance periods. By collecting key variables operation data of the process and using unsupervised machine leaning methods, we developed a fault detection model which detected 4 ESDs 2.4 days prior to the occurrence. In addition, it was confirmed that the life expectancy of a hyper compressor can be predicted by using the physically significant key variables.

Feedforward EGR Control of a Passenger Car Diesel Engine Equipped with a DC Motor Type EGR Valve (DC 모터방식 EGR 밸브를 적용한 승용디젤엔진의 앞먹임 공기량 제어에 관한 연구)

  • Oh, Byoung-Gl;Lee, Min-Kwang;Park, Yeong-Seop;Lee, Kang-Yoon;SunWoo, Myoung-Ho;Nam, Ki-Hoon;Cho, Sung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.14-21
    • /
    • 2011
  • In diesel engines, accurate EGR control is important due to its effect on nitrogen oxide and particulate matter emissions. Conventional EGR control system comprises a PI feedback controller for tracking target air mass flow and a feedforward controller for fast response. Physically, the EGR flow is affected by EGR valve lift and thermodynamic properties of the EGR path, such as pressures and temperatures. However, the conventional feedforward control output is indirectly derived from engine operating conditions, such as engine rotational speed and fuel injection quantity. Accordingly, the conventional feedforward control action counteracts the feedback controller in certain operating conditions. In order to improve this disadvantage, in this study, we proposed feedforward EGR control algorithm based on a physical model of the EGR system. The proposed EGR control strategy was validated with a 3.0 liter common rail direct injection diesel engine equipped with a DC motor type EGR valve.

The Valuation of Passenger Comfort Benefits in Urban Railroads (도시철도의 승객 쾌적성 편익에 관한 연구)

  • Choi, Young-Eun;Kim, Sung-Soo;Lee, Chang-Ju;Kim, Min-Seong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1426-1440
    • /
    • 2008
  • In Korea, the concentration for the use of urban railroads is comparatively high during peak hours. In case of road traffic, overcrowdness leads the increase of total travel time and cost naturally but this does not happen in railroad systems because of fixed operational interval. Thus, passenger's disutility is generated physically and mentally from congestion increment. The increase of railroad capacity from new transit lines and expansion of existed lines contributes traveler's comfort benefits to rising. However, present evaluation guidelines for feasibility studies of road and railroad projects do not include any valuation methodology about passenger's comfort benefits. Therefore, in this research, various factors affecting comfort benefits are reviewed and stated preference survey is performed in order to estimate traveler's comfort benefits for congestion reduction. In addition, willingness to pay for congestion avoidance is calculated from that stated preference survey based on Tobit Model. As a result, detailed unit for willingness to pay according to congestion reduction is proposed in this study.

  • PDF

Localization and Navigation of a Mobile Robot using Single Ultrasonic Sensor Module (단일 초음파 센서모듈을 이용한 이동로봇의 위치추정 및 주행)

  • Jin Taeseok;Lee JangMyung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.2 s.302
    • /
    • pp.1-10
    • /
    • 2005
  • This paper presents a technique for localization of a mobile robot using a single ultrasonic sensor. The mobile robot is designed for operating in a well-structured environment that can be represented by planes, edges, corners and cylinders in the view of structural features. In the case of ultrasonic sensors, these features have the range information in the form of the arc of a circle that is generally named as RCD (Region of Constant Depth). Localization is the continual provision of a knowledge of position which is deduced from it's a priori position estimation. The environment of a robot is modeled into a two dimensional grid map. we defines a physically-based sonar sensor model and employs an extended Kalman filter to estimate position of the robot. The performance and simplicity of the approach is demonstrated with the results produced by sets of experiments using a mobile robot.

A Review on the Photochemical Oxidant Modeling as Applied to Air Quality Studies in Complex Terrain

  • Lee Hwa-Woon;Kim Yoo-Keun;Won Gyeong-Mee;Park Jong-Kil
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.1
    • /
    • pp.19-33
    • /
    • 1997
  • The high oxidants, which occur the daily maximum concentrations in the afternoon, are transported into the other region via long range transport mechanisms or trapped within the shallow mixing boundary layer and then removed physically (deposition, transport by mountain wind, etc.) and chemically (reaction with local sources). Therefore, modeling formation of photochemical oxidants requires a complex description of both chemical and meteorological processes. In this study, as a part of air quality studies, we reviewed various aspects of photochemical modeling on the basis of currently available literature. The result of the review shows that the model is based on a set of coupled continuity equations describing advection, diffusion, transport, deposition, chemistry, emission. Also photochemical oxidant models require a large amount of input data concerned with all aspects of the ozone life cycle. First, emission inventories of hydrocarbon and nitrogen oxides, with appropriate spatial and temporal resolution. Second, chemical and photochemical data allowing the quantitative description of the formation of ozone and other photochemically-generated secondary pollutants. Third, dry deposition mechanisms particularly for ozone, PAN and hydrogen peroxide to account for their removal by absorption on the ground, crops, natural vegetation, man-made and water surfaces. Finally, meteorological data describing the transport of primary pollutants away from their sources and of secondary pollutants towards the sensitive receptors where environmental damage may occur. In order to improve our present study, shortcomings and limitation of existing models are pointed out and verification process through observation is emphasized.

  • PDF

Study on the Thermal and Dynamic Behaviors of Air Spring for vibration isolation of LCD panel inspecting machine connected with an External Chamber through a flexible tube: PART II, Experimental validation and investigation (외부챔버와 유연한 튜브로 연결된 LCD 패널 검사기 방진용 공기 스프링의 열 및 동적 연성거동에 대한 연구: PART II, 실험적 검증 및 고찰)

  • Seok, Jong-Won;Lee, Ju-Hong;Kim, Pil-Kee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.43-49
    • /
    • 2011
  • In this study, the dynamic characteristics of an air spring connected with an external chamber through a flexible tube are examined. The uncoupled dynamic parameters of the air spring are identified through experiments, followed by the suggestion of a model-based approach to obtain the remaining coupled dynamic parameters using the various frequency response functions derived in PART I paper [1]. To improve or control the damping characteristics of the air spring, this vibration isolation air spring system is physically established in laboratory scale. And we attempt to identify various parameters used to describe to air spring system by both theoretically [1] and experimentally, which is performed in this report. The damping parameter of the tube system is identified through experiments on the system incorporated with the air cylinder, and a nonlinear regression procedure is employed to find solutions. The resulting value is used to expect the frequency response function of dynamic pressure in the top chamber (air spring) with respect to that in the bottom chamber (external chamber). Comparison with the experimental data supports the validity of the present estimation procedures. Also, the dynamic mechanism of the damping effects particularly in a low frequency range is investigated through this experimental endeavor.

An Extended Modal Warping Approach to Real-Time Simulation of Thin Shells (얇은 쉘의 실시간 시뮬레이션을 위한 모달 와핑 기법의 확장)

  • Choi, Min-Gyu;Woo, Seung-Yong;Ko, Hyeong-Seok
    • Journal of Korea Game Society
    • /
    • v.7 no.2
    • /
    • pp.11-20
    • /
    • 2007
  • This paper proposes a real-time simulation technique for thin shells undergoing large deformation. Shells are thin objects such as leaves and papers that can be abstracted as 2D structures. Development of a satisfactory physical model that runs in real-time but produces visually convincing animation of thin shells has been remaining a challenge in computer graphics. Rather than resorting to shell theory which involves the most complex formulations in continuum mechanics, we adopt the energy functions from the discrete shells proposed by Grinspun et al. For real-time integration of the governing equation, we develop a modal warping technique for shells. This new simulation framework results from making extensions to the original modal warping technique which was developed for the simulation of 3D solids. We report experimental results, which show that the proposed method runs in real-time even for large meshes, and that it can simulate large bending and/or twisting deformations with acceptable realism.

  • PDF

Generalization of Modified TOPMODEL for Rainfall-Runoff Analysis of Sulmachun Watershed (수정 TOPMODEL에 의한 유출해석과 일반화 (설마천 유역을 중심으로))

  • Lee, Hak-Su;Kim, Nam-Won;Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.3
    • /
    • pp.295-306
    • /
    • 2002
  • The modified TOPMODEL of two storage systems has been integrated to the generalized assumptions of decreasing hydraulic conductivity to vertical direction. Three different recharge functions were introduced to explore the impact of the macropore flow to vortical direction, the storage at the surface zone and the relative storage deficit of the soil matrix. Combinations of these approaches provide 30 type of the model structure for the hillslope hydrology. Developed models have been applied to several hydrologic events at the Sulmachun watershed. The performance evaluation with the Monte carlo simulation suggests that the exponential function of transmissivity reduction should be appropriate form for the physically -based hydrologic simulation on the Sulmachun watershed. It has been shown that the recharge function of macropore flow contributes to improve the predictability of the generalized version of modified TOPMODEL.

Distortional Analysis of Multicell Box Girders with a Trapezoidal Cross-Section Using Force-Decomposition Method (하중분해법을 사용한 제형 다실박스거더의 뒤틀림 해석)

  • Kim, Seungjun;Park, Nam Hoi;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.779-788
    • /
    • 2008
  • In this present study, the three dimensional shell elements analysis method for exact distortional behavior of multicell trapezoidal box girders subjected to an eccentric loading is proposed. In order to perform the independent distortional analysis using shell elements, it is necessary to calculate exact distortional forces. In this study, the force-decomposition equation for applied eccentric load acting on multicell trapezoidal box girder is derived and the equation based on static force equilibrium and superposition theory decompose the eccentric load to the loads cause flexture, torsion and distortion. So by using this force-decomposition equation and shell element analysis, each behavior can be easily analysis independently. This independent analysis method is very useful to physically understand each major behavior of multicell box girder, especially distortional phenomenon. Furthermore, it may be also very useful for designer to perform the independent distortional analysis for diaphragm design using simple 3D shell elements model without preliminary complex calculation for distortional constants.