• Title/Summary/Keyword: physical simulator

Search Result 257, Processing Time 0.029 seconds

A Hardware-Software Co-verification Methodology for cdma2000 1x Compliant Mobile Station Modem (cdma2000 1x 이동국 모뎀을 위한 하드웨어-소프트웨어 동시 검증 방법)

  • Han, Tae-Hee;Han, Sung-Chul;Han, Dong-Ku;Kim, Sung-Ryong;Han, Geum-Goo;Hwang, Suk-Min;Kim, Kyung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.7
    • /
    • pp.46-56
    • /
    • 2002
  • In this paper, we describe a hardware-software co-verification methodology and environment in developing a mobile station modem chip for cdma2000 1x which is one of the 3rd generation mobile communication standards. By constructing an efficient co-verification environment for a register-transfer-level hardware model and a physical-layer software model combining a channel link simulator and a versatile test-bench, we can drastically reduce both time and cost for developing a complex three-million-gate class system integrated circuit.

Effects of Visual Perception Skills on Driving Performance of Patients With Stroke (뇌졸중 환자의 시지각 능력이 운전수행에 미치는 영향)

  • Kwak, Ho-Soung
    • Therapeutic Science for Rehabilitation
    • /
    • v.9 no.1
    • /
    • pp.45-55
    • /
    • 2020
  • Objective : The purpose of this study was to investigate the effects of visual perception on driving performance and the importance of visual training for improving driving performance in patients with stroke. Methods : The evaluations, using MVPT(Motor-free Visual Perception Test), TMT A&B(Trail Making Test A & B), UFOV(Useful Field Of View test), and a driving simulator, were carried out with patients in department of physical medicine and rehabilitation in a rehabilitation hospital from October 2014 to November 2014. Results : Driving performance was related to the ability of various visual perceptions of patients with stroke, and the highest correlation was found in the UFOV subtest 2, TMT B, and MVPT. The results of discriminant analysis indicated a sensitivity of 100.0%, specificity of 80.0%, and predicted the results of the driving simulator with 89.5% accuracy. Conclusion : This study found that visual-perception skills influence driving performance and suggested the importance of visual-perception skill training for driving.

A VR-Based Integrated Simulation for the Remote Operation Technology Development of Unmanned-Vehicles in PRT System (자동 운전 PRT 차량의 무선 관제 기술 개발을 위한 가상 환경 기반 통합 시뮬레이터 개발)

  • Park, Pyung-Sun;Kim, Hyun-Myung;Ok, Min-Hwan;Jung, Jae-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.1
    • /
    • pp.43-56
    • /
    • 2013
  • Personal Rapid Transit(PRT), which is one of the next generation convergence transport technology, PRT system requires operation technology for controlling diverse vehicles and dealing with a variety of abnormal driving situations on a large scale trackway structures in expected operational area more efficiently and reliably. Before developing PRT control technology, it is essential that multiple testing procedures stepwise with building small scale test-tracks and develop real unmanned-vehicles. However, it is expected that the experiments demand huge amount of time and physical cost. Thus, simulation in virtual environment is efficient to develop wireless based control technology for multiple PRT vehicles prior to building real-test environment. In this paper, we propose a VR-based integrated simulator which physics engine is applied so that it enables simulation of front-wheel-steering PRT system rather than simple rail track system. The proposed simulator is also developed that it can reflect geographical features, infrastructures and network topology of expected driving region.

Changes in Fire Characteristics according to the Distance Between the Fire Source and Sidewall in a Reduced-Scale Compartment (축소 구획실에서 화원과 측벽의 거리에 따른 화재특성 변화)

  • Yun, Hong-Seok;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.50-59
    • /
    • 2019
  • Experimental and numerical studies on the fire characteristics according to the distance between the fire source and sidewall under the over-ventilated fire conditions. A 1/3 reduced ISO 9705 room was constructed and spruce wood cribs were used as fuel. Fire Dynamics Simulator (FDS) was used for fire simulations to understand the phenomenon inside the compartment. As a result, the mass loss rate and heat release rate were increased due to the thermal feedback effect of the wall in the compartment fire compared to the open fire. As the distance between the fire source and sidewall was reduced, the major fire characteristics, such as maximum mass loss rate, heat release rate, fire growth rate, temperature, and heat flux, were increased despite the limitations of air entrainment into the flame. In particular, a significant change in these physical quantities was observed for the case of a fire source against the sidewall. In addition, the vertical distribution of temperature was changed considerably due to a change in the flow structure inside the compartment according to the distance between the fire source and sidewall.

Development of a Virtual Training Simulator for Nuclear Power Plant Decommissioning (원전해체 가상훈련 시뮬레이터 개발)

  • S-Ra-El Lee;Ho-Jung Kang;Young-Il Ahn;Won-Sik Kim;Dong-Seok Song;Myoung-Ho Kim;Sung-Uk lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.5
    • /
    • pp.195-202
    • /
    • 2024
  • Since the permanent shutdown of the Kori No. 1 reactor, research on nuclear power plant decommissioning has been actively conducted. The core facilities (reactor pressure vessel, steam generator, reactor coolant pump, and pressurizer) of a nuclear power plant have the highest radioactivity among the structures of a nuclear power plant, and the reactor pressure vessel (RPV) is the most radioactive object other than the nuclear fuel. In order to dismantle them, accurate preliminary information (2D, 3D models, etc.) and radiological characterization of the dismantling object are required, as well as feasibility studies of dismantling equipment and dismantling processes. However, it is impossible to review the dismantling process with only prior information and radiological characterization, and when using physical mock-ups, simulation and training in a virtual environment are necessary due to the difficulty of applying various dismantling equipment. In this paper, we developed a remote decommissioning training system that can improve the remote decommissioning technology of the nuclear power plant decommissioning process and the decommissioning skills of decommissioning workers by applying virtual reality and haptic technology.

Sound Characteristics and Mechanical Properties of Taekwondo Uniform Fabrics (태권도 도복 직물의 소리 특성과 역학적 성질)

  • Jin, Eun-Jung;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.3
    • /
    • pp.486-491
    • /
    • 2012
  • This study examined the sound characteristics of Taekwondo uniform fabrics to investigate the relationship between the sound parameters and the mechanical properties of the fabric as well as to provide the conditions to maximize the frictional sound of the uniform. Frictional sounds of 6 fabrics for Taekwondo uniforms were generated by the Simulator for Frictional Sound of Fabrics. The frictional speeds were controlled at low(0.62 m/s), at mid(1.21 m/s) and at high(2.25 m/s) speed, respectively. The frictional sounds were recorded using a Data Recorder and Sound Quality System subsequently, the physical sound properties such as SPL(Sound Pressure Level) and Zwicker's psychoacoustic parameters were calculated. Mechanical properties of specimens were measured by KES-FB. The SPL, Loudness(Z) values increased while Sharpness(Z) value decreased. In the physical sound parameter, specimen E had the highest SPL value at low speed and specimen B at high speed. In case of Zwicker's psychoacoustic parameters, the commercially available Taekwondo uniform fabrics(E, F) showed higher values of Loudness(Z), Sharpness(Z), and Roughness(Z), that indicates they can produce louder, shaper and rougher sounds than other fabrics for Taekwondo uniforms. The decisive factors that affected frictional sounds for Taekwondo uniforms were W(weight) as well as EM(elongation at maximum load) at low speed and WC(compressional energy) at high speed.

Change in Physical Properties of Engine oil Contaminated with Diesel (경유 혼입에 의한 엔진오일 물성 변화)

  • Lim, Young-Kwan;Lee, Jong-Eun;Na, Yong-Gyu;Kim, Jong-Ryeol;Ha, Jong-Han
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.45-51
    • /
    • 2017
  • Engine oil is a substance used for the lubrication of internal combustion systems. However, in some case, defects in engine systems may contaminate engine oil with fuel. Contaminated engine oil can cause problems in the normal functioning of a vehicle. In this study, we investigate the functional properties of engine oil contaminated with diesel fuel. The test results indicate that the engine oil contaminated with diesel fuel has low flash point, pour point, density, kinematic viscosity and cold cranking simulator value. The contaminated engine oil which has low plash point can cause fire and explosion accident. Furthermore, a four ball test indicates that the contaminated engine oil increases wear scar to poor lubricity. Moreover, we investigate the GC pattern using SIMDIST (simulated distillation) for determination of diesel in engine oil. The SIMDIST analytic result, diesel was detected at earlier retention time than engine oil in chromatogram. Thus the SIMDIST method can define whether engine oil is contaminated by diesel fuel or not. We can use the SIMDIST method for the diagnosis of oil condition instead of analyzing other physical properties that require many analytic instruments, large volume of oil sample and long analysis time.

Research on the Development of Artificial Organs based on the Physical Properties of the Human Body (인체의 물리적 성질을 이용한 인공장기 개발 연구)

  • Lee, SeungBock
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.670-675
    • /
    • 2022
  • In the era of the 4th industrial revolution, everything is data-centric. The type and amount of data may be central, and new data may be required in special circumstances. As 3D printers are used in various fields, there are fields that are newly challenged. In particular, in the medical field, new attempts that have not been considered before are taking place. This paper is a study to enable research in fields that require physical properties of the human body. In the meantime, research using human organs has mainly used the materials made of silicon. We measure the physical properties of the human body from cadavers, apply these characteristics to develop new materials, and develop artificial organs with 3D printers. Using the artificial organs made in this way, you can practice surgery with a robot that removes kidney stones. In this paper, we would like to introduce a series of research processes to develop advanced materials similar to human organs.

Understanding and predicting physical properties of rocks through pore-scale numerical simulations (공극스케일에서의 시뮬레이션을 통한 암석물성의 이해와 예측)

  • Keehm, Young-Seuk;Nur, Amos
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.201-206
    • /
    • 2006
  • Earth sciences is undergoing a gradual but massive shift from description of the earth and earth systems, toward process modeling, simulation, and process visualization. This shift is very challenging because the underlying physical and chemical processes are often nonlinear and coupled. In addition, we are especially challenged when the processes take place in strongly heterogeneous systems. An example is two-phase fluid flow in rocks, which is a nonlinear, coupled and time-dependent problem and occurs in complex porous media. To understand and simulate these complex processes, the knowledge of underlying pore-scale processes is essential. This paper presents a new attempt to use pore-scale simulations for understanding physical properties of rocks. A rigorous pore-scale simulator requires three important traits: reliability, efficiency, and ability to handle complex microstructures. We use the Lattice-Boltzmann (LB) method for singleand two-phase flow properties, finite-element methods (FEM) for elastic and electrical properties of rocks. These rigorous pore-scale simulators can significantly complement the physical laboratory, with several distinct advantages: (1) rigorous prediction of the physical properties, (2) interrelations among the different rock properties in a given pore geometry, and (3) simulation of dynamic problems, which describe coupled, nonlinear, transient and complex behavior of Earth systems.

  • PDF

Development of Rustling Sound Generator Using Reciprocating Motion and Evaluation of Its Fabric Sound (왕복운동에 의한 직물마찰음발생장치의 개발 및 이를 이용한 직물소리 평가)

  • Kim Chun-Jeong;Cho Gil-Soo
    • Science of Emotion and Sensibility
    • /
    • v.9 no.2
    • /
    • pp.133-140
    • /
    • 2006
  • In order to investigate the sensation of the fabric sound simulating the real wear-condition, the fabric sound simulator using reciprocating friction was developed. Fabric sounds from 5 specimen were generated by the fabric sound simulator and recorded using high performance microphone. Physical sound parameters of fabrics including level pressure of total sound (LPT), level range (${\Delta}L$), and frequency differences (${\Delta}f$) were calculated. For psychological evaluation, seven adjectives for sound (softness, loudness, sharpness, clearness, roughness, highness, and pleasantness) were used as the semantic differential scale. Fabric sounds by reciprocating friction of nylon taffeta and polyester leno had the highest value of LPT and evaluated as loud, sharp, rough, and unpleasant while polyester ultra suede and silk crepe de chine haying the lower LPT and ${\Delta}f$ were perceived as soft and quite. Comparing with fabric sound by one-way friction, fabric sound by reciprocation friction was perceived as more sharp, loud, and rough. LPT was also the most important factor affecting the sensation of the fabric sound by reciprocating friction.

  • PDF