• Title/Summary/Keyword: physical simulation test

Search Result 244, Processing Time 0.028 seconds

Damage at the Peach Due to Vibrational Stress During Transportation Simulation Test (모의수송 중 진동피로에 의한 복숭아의 손상)

  • Choi, Seung-Ryul;Lee, Young-Hee;Choi, Dong-Soo;Kim, Man-Soo
    • Journal of Biosystems Engineering
    • /
    • v.35 no.3
    • /
    • pp.182-188
    • /
    • 2010
  • Post-Harvest processing engineering is a field that studies prevention of the quality change of agricultural products during sorting, packaging, storage, and distribution after harvested. In distribution steps, agricultural products could be damaged by physical force, it is the main reason of low quality and they lost value of commodities. This study was performed to find the vibration characteristics of the peach, and to find the extent of the damage on the peach by fatigue stress. The vibration data was obtained on expressway and the vibration characteristics of peach was used to find the damage on the peach. To analyze the vibration characteristics of peach, the resonance frequency and vibration transmissibility were measured. The resonance frequency of the peach was 167.98 Hz and the transmissibility was 4.06 at resonance point. It was 150 ~ 250 Hz that the transmissibility was more than 1. And the transmissibility in simulated test was measured. When the trasmissibility was more than 1, the range was 15 ~ 65 Hz, and when it was less than 1, the range was 65 ~ 175 Hz. When the transmissibility was about 1, the range was 5 ~ 15 Hz. The damage and the vibration cycle numbers of peaches were compared with input frequency and acceleration. More damage and less cycle number happened in 30 Hz than in 62.5 Hz. The reason was that the transmissibility of 30 Hz was higher and the vibration displacement in lower frequency was more. The more acceleration and cycle number increased, the more the bruising volume of peaches increased. The bruising volume ratio for vibration fatigue was measured according to input acceleration and cycle number. Using measured data, regression models for bruising volume ratio(BVR) was developed as a function of the acceleration(A) and cycle number(CN) as follows. BVR = a * $A^b*$ $(CN)^c$

Multi-Scale Heterogeneous Fracture Modeling of Asphalt Mixture Using Microfabric Distinct Element Approach

  • Kim Hyun-Wook;Buttler William G.
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.139-152
    • /
    • 2006
  • Many experimental and numerical approaches have been developed to evaluate paving materials and to predict pavement response and distress. Micromechanical simulation modeling is a technology that can reduce the number of physical tests required in material formulation and design and that can provide more details, e.g., the internal stress and strain state, and energy evolution and dissipation in simulated specimens with realistic microstructural features. A clustered distinct element modeling (DEM) approach was implemented In the two-dimensional particle flow software package (PFC-2D) to study the complex behavior observed in asphalt mixture fracturing. The relationship between continuous and discontinuous material properties was defined based on the potential energy approach. The theoretical relationship was validated with the uniform axial compression and cantilever beam model using two-dimensional plane strain and plane stress models. A bilinear cohesive displacement-softening model was implemented as an intrinsic interface and applied for both homogeneous and heterogeneous fracture modeling in order to simulate behavior in the fracture process zone and to simulate crack propagation. A disk-shaped compact tension test (DC(T)) with heterogeneous microstructure was simulated and compared with the experimental fracture test results to study Mode I fracture. The realistic arbitrary crack propagation including crack deflection, microcracking, crack face sliding, crack branching, and crack tip blunting could be represented in the fracture models. This micromechanical modeling approach represents the early developmental stages towards a 'virtual asphalt laboratory,' where simulations of laboratory tests and eventually field response and distress predictions can be made to enhance our understanding of pavement distress mechanisms, such its thermal fracture, reflective cracking, and fatigue crack growth.

  • PDF

Shear behavior of non-persistent joints in concrete and gypsum specimens using combined experimental and numerical approaches

  • Haeri, Hadi;Sarfarazi, V.;Zhu, Zheming;Hokmabadi, N. Nohekhan;Moshrefifar, MR.;Hedayat, A.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.221-230
    • /
    • 2019
  • In this paper, shear behavior of non-persistent joint surrounded in concrete and gypsum layers has been investigated using experimental test and numerical simulation. Two types of mixture were prepared for this study. The first type consists of water and gypsum that were mixed with a ratio of water/gypsum of 0.6. The second type of mixture, water, sand and cement were mixed with a ratio of 27%, 33% and 40% by weight. Shear behavior of a non-persistent joint embedded in these specimens is studied. Physical models consisting of two edge concrete layers with dimensions of 160 mm by 130 mm by 60 mm and one internal gypsum layer with the dimension of 16 mm by 13 mm by 6 mm were made. Two horizontal edge joints were embedded in concrete beams and one angled joint was created in gypsum layer. Several analyses with joints with angles of $0^{\circ}$, $30^{\circ}$, and $60^{\circ}$ degree were conducted. The central fault places in 3 different positions. Along the edge joints, 1.5 cm vertically far from the edge joint face and 3 cm vertically far from the edge joint face. All samples were tested in compression using a universal loading machine and the shear load was induced because of the specimen geometry. Concurrent with the experiments, the extended finite element method (XFEM) was employed to analyze the fracture processes occurring in a non-persistent joint embedded in concrete and gypsum layers using Abaqus, a finite element software platform. The failure pattern of non-persistent cracks (faults) was found to be affected mostly by the central crack and its configuration and the shear strength was found to be related to the failure pattern. Comparison between experimental and corresponding numerical results showed a great agreement. XFEM was found as a capable tool for investigating the fracturing mechanism of rock specimens with non-persistent joint.

A Case Study of the Implementation and Verification of VLAN-applied Network Based on a Five-step Scenario (5단계 시나리오에 기반한 VLAN이 적용된 네트워크 구현 및 검증 사례연구)

  • Kim, No-Whan;Park, Jin-Seob
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • This paper presents a topology based on packet tracer and a five-step scenario model to make it easier for students to understand the network on which VLANs are applied. Virtual LAN (VLAN), developed as an alternative solution to the Routers that distribute broadcast traffic, is a virtual local area network that logically configured regardless of the physical network. The VLAN prevents the network performance degradation resulting from the broadcast traffic by dividing the broadcast domain so that the bandwidth can be used more efficiently. In addition, it enhances the security because on communication between the devices belonging to different VLANs is impossible. The five-step scenarios in this paper presented an efficient implementation case for students to understand and validate the various functions of VLANs through ping/telnet/tracert test and simulation, after setting up each step of programming switches and routers in the virtual network.

Performance Analysis of Cloud-Net with Cross-sensor Training Dataset for Satellite Image-based Cloud Detection

  • Kim, Mi-Jeong;Ko, Yun-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.103-110
    • /
    • 2022
  • Since satellite images generally include clouds in the atmosphere, it is essential to detect or mask clouds before satellite image processing. Clouds were detected using physical characteristics of clouds in previous research. Cloud detection methods using deep learning techniques such as CNN or the modified U-Net in image segmentation field have been studied recently. Since image segmentation is the process of assigning a label to every pixel in an image, precise pixel-based dataset is required for cloud detection. Obtaining accurate training datasets is more important than a network configuration in image segmentation for cloud detection. Existing deep learning techniques used different training datasets. And test datasets were extracted from intra-dataset which were acquired by same sensor and procedure as training dataset. Different datasets make it difficult to determine which network shows a better overall performance. To verify the effectiveness of the cloud detection network such as Cloud-Net, two types of networks were trained using the cloud dataset from KOMPSAT-3 images provided by the AIHUB site and the L8-Cloud dataset from Landsat8 images which was publicly opened by a Cloud-Net author. Test data from intra-dataset of KOMPSAT-3 cloud dataset were used for validating the network. The simulation results show that the network trained with KOMPSAT-3 cloud dataset shows good performance on the network trained with L8-Cloud dataset. Because Landsat8 and KOMPSAT-3 satellite images have different GSDs, making it difficult to achieve good results from cross-sensor validation. The network could be superior for intra-dataset, but it could be inferior for cross-sensor data. It is necessary to study techniques that show good results in cross-senor validation dataset in the future.

Automation of BIM Material Mapping to Activate Virtual Construction (가상건설 활성화를 위한 BIM 재질 매핑 자동화 기술)

  • Seo, Myoung Bae
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.107-115
    • /
    • 2020
  • Recently, BIM has become mandatory in the construction field, research on various use cases is increasing. In particular, when virtual reality technology, one of the core technologies of the 4th industrial revolution, and BIM are combined, it can be used in various fields such as preliminary design review and construction simulation. Until now, however, virtual reality grafting technology is only used as a simple prototype or as a model house. Also, it is difficult to activate virtual construction because it is expensive to produce high-quality virtual reality contents. Therefore, in this paper, in order to increase the utilization and quality of the virtual construction field, a study was conducted to shorten the material mapping time, which takes a lot of time when producing virtual reality contents using BIM. To this end, object properties were assigned to enable material mapping in the BIM model, and materials most used in the construction field were configured, and automated material function development and final tests were conducted that automatically map properties and materials. For the test, 10 models were used and the test was repeated three times, and the productivity improvement of about 50.16% was finally achieved. In the future, we plan to conduct research on physical data weight reduction based on the advanced material mapping automation function and the large-capacity BIM model.

Study on Energy Performance And Economic Evaluation of Windows System with Built-in Type Blinds (블라인드 내장형 창호시스템의 에너지 성능 및 경제성 평가에 관한 연구)

  • Joe, Won-Hwa;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • This study evaluated the energy efficiency of a windows system using built-in blinds, with regard to their insulation performance and their blocking of solar radiation. The study took advantage of the "Physibel Voltra" program as a physical simulation of heat transfer. To simulate the "Physibel Voltra" program, I practiced a mock-up test to determine heating quality and translation condition. I analyzed the propensity to annual energy consumption, the annual quantity of heat transfer, and the annual cooling and heating cost through a computer simulation for one general household in an apartment building. In the test, it was found that compared to a general windows system, a windows system with built-in blinds reduced the annual heat transfer by 10% in cooling states and by 11% in heating states when the blind was up. When the blind was down, the windows system with built-in blinds reduced the annual heat transfer by 25% in cooling states and 30% in heating states. When a windows system with built-in blinds is compared with a general windows system, the quantity of cooling and heating loads is reduced by 283.3kw in cooling states and 76.3kw in heating states. This leads to a reduction in the required cooling and heating energy of 359.6kw per house. It is thus judged that the use of a windows system with built-in blinds is advantageous in terms of reducing greenhouse gas emissions, because the annual TOE (tons of oil equivalent) per house is reduced by 0.078TOE, while $tCO_2$ is reduced by $0.16tCO_2$. In addition, compared with a general windows system, the cost of cooling and heating loads in the system reduces the annual cooling cost by 100,000won, and the annual heating cost by 50,000won. Ultimately, this means that cooling and heating loads are cut by 150,000won per year.

Implementation and Performance Analysis for MX-S2X, Ship Centric Direct Communication based on High-frequency (고 주파수 기반 선박중심 직접통신(MX-S2X) 물리계층 구현 및 성능분석)

  • Hye-Jin, Kim;Hyung-Jick, Ryu;Jin-Yeong, Chang;Won-Yong, Kim;Bu-Young, Kim;Woo-Seong, Shim
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.570-575
    • /
    • 2022
  • The MX-S2X, utilizing high-frequency broadband communication technology, provides a reliable connection between land, ship, and facilities. This technology is expected to be effectively utilized as a future maritime communication infrastructure in the upcoming mixed navigational situation among autonomous and manned and/or unmanned ships. Following the physical layer design and M&S-based performance analysis of the MX-S2X system to overcome maritime multipath fading, this paper confirms the optimized and detailed design of physical layer hardware and implemented it to verify the performance. The PER(Packet Error Rate) performance was then measured by configuring a test environment to verify the implemented hardware. The results showed that the performance degradation was 0.2 dB in the AWGN environment and 1.2 dB in the Multi-path Fading on Sea Environment, thus confirming the successful implementation of the physical layer.

Analysis of the Vent Path Through the Pressurizer Manway Under the Loss of Residual Heat Removal(RHR) System During Mid-Loop Operation in PWR (가압경수로 부분충수 운전중 잔열제거 (RHR)계통 상실시 가압기 통로를 통한 배출유로 특성 분석)

  • Ha, G.S.;Kim, W.S.;Chang, W.P.;Yoo, K.J.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.859-869
    • /
    • 1995
  • The present study is to understand the physical phenomena anticipated during the accident with RHR loss under mid-loop operation in a PWR and, at the same time, to examine the prediction capability of RELAP5/MOD3.1 on such an accident, by simulating an integral test relevant to this accident for reliable analysis in an actual PWR. The selected experiment, i.g. BETHSY Test 6.9a, represents the configuration with the pressurizer manway open and steam generators unavailable during the accident. Accordingly, the results of this ok are sure to contribute to understanding both the key events as well as the sensitive parameters, anticipated in the accident, for validity of the actual analysis. In the simulation result overall behavior as well as major phenomena observed in the experiment have been predicted reasonably by RELAP5/MOD3.1, however, the problem associated with enormous computing time .due to small time step size has been encountered. Besides, the code prediction of higher swollen level in the pressure vessel has given rise to overestimation of both pressurizer level and RCS pressure. Subsequently, overprediction of the break flow through the manway has led to earlier core uncovery than that in the experiment by about 400 seconds. As a whole, it is demonstrated from both the experiment and the analysis that gravity feed has not been sufficient to recover the core level and thus additional forced feed has been necessary in this configuration.

  • PDF

Grid-Based Civil-Engineering Remote Experiment System (그리드 기반의 토목공학 원격실험 시스템)

  • Lee, Jang-Ho;Jeong, Tai-Kyeong
    • The KIPS Transactions:PartA
    • /
    • v.14A no.2
    • /
    • pp.125-132
    • /
    • 2007
  • Recently, in the engineering area, there is an increasing need for researchers at a distance to share the result of the experiment, without having to visit the experiment facilities. Especially in the civil engineering, researchers feel the need for participating in a experiment conducted at a distant location. In addition, it is suggested that high-cost facilities should be used by remote researchers thereby increasing the utilization rate. This paper proposes a remote experiment environment in civil engineering that are being developed in a project called Korea Construction Engineering Development(KOCED), which connects major civil engineering experiment facilities using grid technology, allows researchers to participate in a remote experiment, and has the experiment results shared by remote researchers automatically. Then, based on the suggested environment, we designed a hybrid test facility that involves two physical experiment facility sites and one numerical simulation site that are geographically apart. Then, we implemented its prototype and ran some tests, which showed a possibility of grid-based civil engineering experiment.