• Title/Summary/Keyword: physical pretreatment

Search Result 165, Processing Time 0.025 seconds

Application of chemically enhanced backwash coping with algal inflow in desalination pretreatment using ceramic membrane (세라믹 분리막을 이용한 해수담수화 전처리 공정에서 조류 유입에 대한 유지세정 적용)

  • Kang, Joon-Seok;Park, Seo-Gyeong;Lee, Jeong-Jun;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.97-106
    • /
    • 2018
  • In this study, the effect of chemically enhanced backwash(CEB) coping with algal(Heterosigma Akashiwo) inflow was evaluated in the seawater desalination pretreatment process using ceramic membrane. In order to confirm the possibility of long-term filtration operation, the recovery rate of transmembrane pressure(TMP) due to the CEB using NaOCl was examined. When the membrane flow rate was 83.3 LMH, the TMP was maintained within 200 kPa for 84 hours in seawater influent. As the algal counts of 30,000 cell/mL were injected into the influent of seawater, however, the TMP rapidly increased and exceed maximum value. Membrane fouling caused by the algae was very poorly recovered by usual physical backwash. The CEB was performed for 30 min(3 min circulation / 27 min immersion) with 300 mg/L of NaOCl. As a result of the CEB application, it was possible to maintain a stable operating of filtration during 10 days and the average recovery rate of TMP by the CEB was 98.1%. It has been confirmed that the CEB using NaOCl is very effective in removal of membrane fouling by algae, resulted in stable membrane filtration for the long-term operation.

The Relaxing Effect of ${\alpha}$-Defensin 1 on the Adrenergic Responses of Rat Bladder

  • Lee, Shin-Young;Kim, Don-Kyu;Kim, Kyung-Do;Myung, Soon-Chul;Lee, Moo-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.3
    • /
    • pp.143-147
    • /
    • 2011
  • Defensins, cysteine-rich cationic polypeptides released from neutrophils, are known to have powerful antimicrobial properties. In this study, we sacrificed 30 rats to investigate the effects of ${\alpha}$-defensin 1 on detrusor muscle contractions in isolated rat bladder. From the experiments we found relaxing effects of ${\alpha}$-defensin 1 on the contractions induced by phenylephrine (PE) but not by bethanechol (BCh) in the detrusor smooth muscles. To determine the mechanisms of the effects of ${\alpha}$-defensin 1, the changes of effects on PE-induced contraction by ${\alpha}$-defensin 1 pretreatment were observed after pretreatment of Rho kinase inhibitor (Y-27632), protein kinase C (PKC) inhibitor (Calphostin C), potent activator of PKC (PDBu; phorbol 12,13-dibutyrate), and NF-${\kappa}B$ inhibitors (PDTC; pyrrolidinedithiocarbamate and sulfasalazine). The contractile responses of PE ($10^{-9}{\sim}10^{-4}$ M) were significantly decreased in some concentrations of ${\alpha}$-defensin 1 ($5{\times}10^{-9}$ and $5{\times}10^{-8}$ M). When strips were pretreated with NF-kB inhibitors (PDTC and sulfasalazine; $10^{-7}{\sim}10^{-6}$ M), the relaxing responses by ${\alpha}$-defensin 1 pretreatment were disappeared. The present study demonstrated that ${\alpha}$-defensin 1 has relaxing effects on the contractions of rat detrusor muscles, through NF-${\kappa}B$ pathway. Further studies in vivo are required to clarify whether ${\alpha}$-defensin 1 might be clinically related with bladder dysfunction by inflammation process.

Development of Volatile Organic Compound Pretreatment Device for Removing Exhaust Gas from Display Manufacturing Process (Display 제조공정 배출가스 처리를 위한 휘발성 유기화합물 전처리 장치 개발)

  • Moon, Gi-Hak;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.523-529
    • /
    • 2019
  • In this study, we investigated the pretreatment technologies of volatile organic compounds (VOCs) which is a problem as the semiconductor and display industry develops recently. The conventional concentrator used in the direct combustion system, is easily contaminated by the exhaust gas in the manufacturing process of the display, resulting in the low treatment efficiency of generated VOCs. Physical/Chemical analyses of the exhaust gas showed high boiling point and viscosity in addition to a large amount of molecular weight alcohols and oil components. In this study, we tried to treat degrading materials by using the heat exchanger in a pretreatment facility and some materials degrading the concentrator were condensed more than 90%. In addition, it was also confirmed that an auxiliary device of the grease filter could remove the redispersion polymer oil from the heat exchanger.

Improvement of Dimensional Stability of Tropical Light-Wood Ceiba pentandra (L) by Combined Alkali Treatment and Densification

  • Deded Sarip NAWAWI;Andita MARIA;Rizal Danang FIRDAUS;Istie Sekartining RAHAYU;Adesna FATRAWANA;Fadlan PRAMATANA;Pamona Silvia SINAGA;Widya FATRIASARI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.133-144
    • /
    • 2023
  • Densification is an effective method for improving the physical and mechanical properties of low-density wood. However, the set-recovery of dimensions was found to be the problem of densified wood due to low fixation during the densification process. Alkali pretreatment before densification is thought to be a modification process to improve the dimensional stability of densified wood. In this research, the wood samples used were boiled in a 1.25 N sodium hydroxide (NaOH) solution at different times, followed by densification for 5 h at 100℃. The alkali pretreatment for 1, 3, and 5 h of boiling increased the dimensional stability of densified woods and anti-swelling efficiency values were 8.52%, 63.24%, and 48.94%, respectively. The boiling of wood in NaOH solution decreased the holocellulose content, as well as lignin to a lesser degree, and a lower crystallinity index was observed. The lower hydroxyl groups and a higher proportion of lignin in treated samples seem to have contributed to the high dimensional stability detected.

Recovery of Copper from Waste Printed Circuit Boards by High-temperature Milling Process (고온 밀링 공정을 통한 폐인쇄회로기판으로부터 구리 회수)

  • Woo-chul Jung;Byoungyong Im;Dae-Geun Kim
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.22-28
    • /
    • 2024
  • Waste PCBs contain a large amount of valuable resources, including copper, and technology to recover them is constantly being developed. Generally, to recycle waste PCBs, a physical pretreatment process such as shredding and crushing is required. However, during this stage, the loss rate of metals is high and the sorting efficiency is low, indicating a need for a more efficient recycling pretreatment process. In this study, a high-temperature milling process, which simultaneously employs heat treatment and ball milling, was utilized to efficiently recover copper from waste PCBs. An experiment was conducted at 350 ℃ with milling time, milling speed, and the weight of the balls as variables. The results showed a copper recovery rate of over 90% under the conditions of a ball weight of 500 g, a milling speed of 70 RPM, and a milling time of 5 hours. The purity of the recovered copper was approximately 93%, and through post-processing after the high-temperature milling process, the feasibility of reusing the recovered copper as a high-purity material was confirmed.

Study on Affecting Variables Appearing through Chemical Pretreatments of Poplar Wood (Populus euramericana) to Enzymatic Hydrolysis (이태리 포플러의 화학적 전처리 공정을 통한 효소가수분해 영향 인자 분석)

  • Koo, Bon-Wook;Park, Nahyun;Yeo, Hwanmyeong;Kim, Hoon;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.255-264
    • /
    • 2009
  • To evaluate the effects of chemical pretreatments of lignocellulosic biomass on enzymatic hydrolysis process, Populus euramericana was pretreated for 1 hr with 1% sulfuric acid ($H_2SO_4$) at $150^{\circ}C$ and 1% sodium hydroxide (NaOH) at $160^{\circ}C$, respectively. Before the enzymatic hydrolysis, each pretreated sample was subjected to drying process and thus finally divided into four subgroups; dried or non-dried acid pretreated samples and dried or non-dried alkali pretreated samples and chemical and physical properties of them were analyzed. Biomass degradation by acid pretreatment was determined to 6% higher compared to alkali pretreatment. By the action of acid ca. 24.5% of biomass was dissolved into solution, while alkali degraded ca. 18.6% of biomass. However, reverse results were observed in delignification rates, in which alkali pretreatment released 2% more lignin fragment from biomass to the solution than acid pretreatment. Unexpectedly, samples after both pretreatments were determined to somewhat higher crystallinity than untreated samples. This result may be explained by selective disrupture of amorphous region in cellulose during pretreatments, thus the cellulose crystallinity seems to be accumulated in the pretreated samples. SEM images revealed that pretreated samples showed relative rough and partly cracked surfaces due to the decomposition of components, but the image of acid pretreated samples which were dried was similar to that of the control. In pore size distribution, dried acid pretreated samples were similar to the control, while that in alkali pretreated samples was gradually increased as pore diameter increased. The pore volume which increased by acid pretreatment rapidly decreased by drying process. Alkali pretreatment was much more effective on enzymatic digestibility than acid pretreatment. The sample after alkali pretreatment was enzymatically hydrolyzed up to 45.8%, while only 26.9% of acid pretreated sample was digested at the same condition. The high digestibility of the sample was also influenced to the yields of monomeric sugars during enzymatic hydrolysis. In addition, drying process of pretreated samples affected detrimentally not only to digestibility but also to the yields of monomeric sugars.

The Modulation of Motility of Pyloric Antral Smooth Muscles of Rat by Melatonin

  • Han, Sang-Hoon;Lee, Da-Woon;Cho, Soo-Hyun;Kim, June-Sun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.2
    • /
    • pp.166-170
    • /
    • 2010
  • Recently some researches have established that the melatonin, secreted by pineal gland, may evoke the changes of contractile responses on smooth muscles. We examined the effects of melatonin on the motility of rat pyloric antrum and which mechanism might be involved in the effects. Pyloric antral strips from the stomach of 20 Sprague-Dawley rats were prepared for isometric tension recording in organ bath. The strips were precontracted by acetylcholine and high-KCl solutions. In precontracted conditions the tensions were increased by accumulative application of melatonin ($10^{-8}-10^{-4}$ M) dose-dependently, even in resting states. And the effects were almost disappeared when the concentrations of ACh were over than 10 ${\mu}M$. The effects of melatonin were inhibited by pretreatment of 10 mM TEA and/or 10 ${\mu}M$ 4-AP and rarely affected by pretreatment of 1 mM TEA, 10 ${\mu}M$ glibenclamide and 10 ${\mu}M$ verapamil respectively. From these results it is concluded that the contractile responses of smooth muscles of rat pyloric antrum were enhanced by melatonin application and the mechanism might be concerned with the inhibition of some voltage-dependent potassium channels.

Pretreatment of Rice Straw for Efficient Enzyme Digestibility (효과적인 효소 소화율을 위한 볏짚 전처리)

  • Kim, Sung Bong;Kim, Jun Seok;Lee, Sang Jun;Lee, Ja Hyun;Gang, Seong-U;Kim, Seung Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.253-253
    • /
    • 2010
  • Rice straw was pretreated with aqueous ammonia in order to enhance enzyme digestibility. Soaking in ammonia aqueous (SAA) was conducted with 15% ammonia, at $60^{\circ}C$. for 24 h. Optimization of both saccharification conditions and enzyme loading of SAA rice straw was carried out. Especially enzyme loading test was performed using statistical method. Moreover proton beam irradiation (PBI) was also performed to overcome the problem which inhibit the enzyme digestibility at 1-25 kGy doses with 45 MeV of beam energy. Optimal condition for enzymatic saccharification was follows; pH 4.8, $50^{\circ}C$, 60 FPU of enzyme activity, 1:4 ratio of celluase and ${\beta}$-glucosidase. Also, optimal doses of PBI on rice straw and SAA-treated rice straw for efficient sugar recovery were found to be 3 kGy, respectively. When saccharification was performed with optimal condition, glucose conversion yield was 89% of theocratical maximum in 48 h, and 3 kGy of PBI was applied to SAA-treated rice straw, approximately 90% of the theoretical glucose yield was obtained in 12 h. The results of X-ray diffractometry (XRD) support the effect of both SAA and PBI on sugar recovery, and scanning electron microscopy (SEM) images unveiled the physical change of the rice straw surface since rugged rice straw surface was observed.

  • PDF

Comparison of the Effects of MK-801 and Dextromethorphan on Opioid Physical Dependence and Analgesic Tolerance (N-methyl-D-aspartate 수용체 길항제가 몰핀 신체의존성 및 진통내성에 미치는 영향)

  • 이선희;신대섭;유영아;김대병;이종권;김부영
    • Toxicological Research
    • /
    • v.11 no.1
    • /
    • pp.63-68
    • /
    • 1995
  • N-methyl-D-aspartate(NMDA) receptor has been well known as an important mediator of several forms of neural and behavioral plasticity. But different results were reported about the effect of MK-801 or dextromethorphan on opioid dependence. The present studies examined whether NMDA receptor antagonists can alter the opioid dependence and tolerance in rodents. Naloxone precipitated withdrawal symptoms and changes of locomotor activities were observed in MK-801 or dextromethorphan pretreated morphine-dependent rats. Tail-flick assay was used for morphine analgesia and tolerance was found after 4 day's consecutive injections (10 mg/kg, s.c., twice/day) of morphine in mice. Locomotor activity was increased and the withdrawal symptoms were decreased by the pretreatment of MK-801 in morphine-dependent rats. But 0.3 mg/kg i.p. of MK-801 intensified the body weight loss and produced severe ataxia and rotation although some withdrawal signs were attenuated. Morphine induced analgesic tolerance was inhibited by the pretreatment of MK-801 and dextromethorphan. Dextromethorphan was more potent than MK-801 in inhibiting the development of the analgesic tolerance in mice. These results suggest that NMDA system may be involved in opioid withdrawal and analgesic tolerance but appropriate caution should be requested when MK-801 is used in combination with opioid because of untoward neurologic signs.

  • PDF

Development of Oriented Strand Board from Acacia Wood (Acacia mangium Willd): Effect of Pretreatment of Strand and Adhesive Content on the Physical and Mechanical Properties of OSB

  • Febrianto, Fauzi;Royama, Lincah Ida;Hidayat, Wahyu;Bakar, Edi S.;Kwon, Jin-Heon;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • Acacia wood (Acacia mangium Willd.) is the most popular fast growing tree species planted in timber estate in Indonesia and is considered to be very valuable raw materials for structural composite products. The objective of the research was to evaluate the properties of OSB prepared from A. Mangium wood with or without immersing the strands to hot water at $80^{\circ}C$ for 2 hours. MDI adhesive was used in 3 levels i.e., 3%, 5%, and 7%. The moisture content of strand was 7%. The results indicated that immersing strands in hot water for 2 hours at $80^{\circ}C$ prior to manufacture OSB improved significantly the mechanical peoperties (i.e., MOR and MOE) of OSB. The higher the adhesive content resulted in the better the dimensional stabilisation (i.e., water absorption and thickness swelling) and the mechanical properties (i.e., MOR, MOE and IB) of OSB. OSB prepared from hot-water immersed strands with 5% adhesive content has met all parameters requirement on the JIS A 5908 (2003) standard.