• 제목/요약/키워드: physical length

Search Result 2,008, Processing Time 0.025 seconds

The Effects of Muscle Energy Technique on the Shoulder Complex Range of Motion and Posture Alignment of Female College Students in their Twenties with a Round Shoulder (근에너지기법이 둥근어깨를 가진 20대 여대생의 어깨복합체 가동성과 자세정렬에 미치는 영향)

  • Im, Gyeong-eun;Jeong, Yeon-woo;Seo, Tae-hwa
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.27 no.2
    • /
    • pp.17-25
    • /
    • 2021
  • Background: The purpose of this study is to investigate basic data about the effects of muscle energy technique on the shoulder complex range of motion and posture alignment in the round shoulder posture. Methods: The subjects included 15 women that gave consent to participate in the study voluntarily. They performed the muscle energy technique for 30 minutes twice. The round shoulder posture was measured with a straight edge ruler. The shoulder complex range of motion was measured with the apley scratch test. The forward head posture was measured with ImageJ. The pectoralis minor muscle length was measured with a tape measure. Results: There were statistically significant differences in the round shoulder posture both right and left (p<.05). The experiment group showed statistically significant differences in the pectoralis minor muscle length (p<.05). There were significant differences in the shoulder complex range of motion including flexion, left lateral flexion, right lateral flexion, left side bending, and right side bending (p<.05), but no significant differences were found in extension (p>.05). The forward head posture showed significant differences in CVA changes (p<.05) and no significant differences in CRA changes (p>.05). Conclusion: These findings demonstrate that the muscle energy technique relaxed muscles around the shoulders and increased the shoulder complex range of motion. The technique is also expected to prevent pain in the neck and shoulders and lower injury risk. In conclusion, the muscle energy technique can be applied as an effective intervention for round shoulder posture.

A Clinical Study about Soyangin Edema Patient (소양인(少陽人) 부종(浮腫) 환자(患者) 치험례(治驗例))

  • Ahn, Taek-Won;Bae, Na-Young
    • Journal of Sasang Constitutional Medicine
    • /
    • v.17 no.3
    • /
    • pp.163-171
    • /
    • 2005
  • 1. Objectives The purpose of this study is to evaluate the effectivity of the Korean herbal medicine therapy which is based on the Sasang constitutional medicine for the Soyangin Edema Patient 2. Methods Patient who diagnosed as Soyangin by physical characteristic, posture and symptoms is evaluated with length of patient' Lt. calf, ankle, foot circumference after medication 3. Results After medicine, 1) Length of patient' Lt. calf was on the decrease from 37.2cm to 34.4cm 2) Length of patient' Lt. ankle was on the decrease from 27.8cm to 25.4cm 3) Length of patient' Lt. foot was on the decrease from 28.0cm to 25.7cm Edema of a Soyangin patient responded well to the treatment with Dojeokgangki-tang 4. Conclusions The case study shows an efficient results by using Dojeokgangki-tang in treatment of Soyangin edema patient.

  • PDF

Estimation of Knee Muscle Length and Moment Arm Using Knee Joint Angle (무릎 관절각을 이용한 무릎 근육 길이와 모멘트 암 추정)

  • Lee, Jae-Kang;Nam, Yoon-Su
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.167-176
    • /
    • 2008
  • Recently, lots of studies are performed in developing of active orthosis. Exact and simple muscle force estimation is important in developing orthosis which assists muscle force for disabled people or physical laborers. Hill-type muscle model dynamics is common method for estimation of muscle forces. In Hill-type muscle model, we must know muscle length and moment arm which largely affect muscle force. And several methods are proposed to estimate muscle length and moment arm using joint angle. In this study, we compared estimation results of those method with data from body model of opensim to find which method is exact for estimation of muscle length and moment arm.

  • PDF

Numerical Study for Spray Characteristics of Liquid Jet in Cross Flow with Variation of Injection Angle (분사각 변화에 따른 횡단류에 분사되는 액체제트의 분무특성에 대한 수치적 연구)

  • Lee Kwan-Hyung;Ko Jung-Bin;Koo Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.161-169
    • /
    • 2006
  • The spray characteristics of liquid jet in cross flow with variation of injection angle are numerically studied. Numerical analysis was carried out using KIVA code, which was modified to be suitable for simulating liquid jet ejected into cross flow. Wave model and Kelvin-Helmholtz(KH)/Rayleigh-Taylor(RT) hybrid model were used for the purpose of analyzing liquid column, ligament, and the breakup of droplet. Numerical results were compared with experimental data in order to verify the reliability of the physical model. Liquid jet penetration length, volume flux, droplet velocity profile and SMD were obtained. Penetration length increases as flow velocity decreases and injection velocity increases. From the bottom wall, the SMD increases as vertical distance increases. Also the SMD decreases as injection angle increases.

Experiment and adiabatic analysis of miniature inertance pulse tube refrigerator (소형 관성관형 맥동관 냉동기의 실험 및 단열 해석)

  • 남중원;남관우;정상권
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.1
    • /
    • pp.53-58
    • /
    • 2004
  • A Miniature inertance pulse tube refrigerator was designed and tested with a 10 W compressor. Erperiments were carried out for different pulse tube length and inertance tube length. An adiabatic model which considered the pressure drop in the regenerator was used to analyze the performance of the pulse tube refrigerator. Among various design parameters which should be optimized, the pulse tube length and the inertance tube length were optimized. PdV work and several different loss mechanism were included in the analysis to simulate more accurately the physical phenomena in the pulse tube refrigerator. Nevertheless, the simulation program could not completely predict the porformance of the refrigerator. The possible reason for the difference of the optimal point between the simulation and the experiment was explained.

Probabilistic Modeling of Fiber Length Segments within a Bounded Area of Two-Dimensional Fiber Webs

  • Chun, Heui-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.3
    • /
    • pp.301-317
    • /
    • 2011
  • Statistical and probabilistic behaviors of fibers forming fiber webs of all kinds are of great significance in the determination of the uniformity and physical properties of the webs commonly found in many industrial products such as filters, membranes and non-woven fabrics. However, in studying the spatial geometry of the webs the observations must be theoretically as well as experimentally confined within a specified unit area. This paper provides a general theory and framework for computer simulation for quantifying the fiber segments bounded by the unit area in consideration of the "edge effects" resulting from the truncated length segments within the boundary. The probability density function and the first and second moments of the length segments found within the counting region were derived by properly defining the seeding region and counting region.

A Study on the Quality Properties of the Expansive For Dry-Shrinkage Compensation of the Floor Mortar (온돌바닥 모르터의 건조수축보상을 위한 팽창제의 품질특성 연구)

  • 이웅종;이종열;정연식;이순기;정성철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.155-160
    • /
    • 2000
  • In this paper, we investigated quality properties for the expansive of the CaO-$CaSO_4$ family which used to compensate dry-shrinkage in the floor mortar of On-Dol heating System. This experimental study established the mix condition with quantity of the expansive and is to investigate the relativity between the compress strength and the length change and the relativity between the chemical properties and the length change with the analysis of the physical and chemical properties. As a result of the study, the expansive is controlled by more the CaO than the $CaSO_4$. The relativity between the compress strength and the length change is expressed by exponential function, showing that if the expansive performance is increased, the compress strength is decreased. And the relativity between the chemical properties and the length change is only relative the quantity of the F-CaO among the chemical properties, is expressed by the second order function, showing that if the F-CaO is increased, the expansive performance is increased.

  • PDF

Effect of length scale parameters on transversely isotropic thermoelastic medium using new modified couple stress theory

  • Lata, Parveen;Kaur, Harpreet
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.17-26
    • /
    • 2020
  • The objective of this paper is to study the deformation in transversely isotropic thermoelastic solid using new modified couple stress theory subjected to ramp-type thermal source and without energy dissipation. This theory contains three material length scale parameters which can determine the size effects. The couple stress constitutive relationships are introduced for transversely isotropic thermoelastic solid, in which the curvature (rotation gradient) tensor is asymmetric and the couple stress moment tensor is symmetric. Laplace and Fourier transform technique is applied to obtain the solutions of the governing equations. The displacement components, stress components, temperature change and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effects of length scale parameters are depicted graphically on the resulted quantities. Numerical results show that the proposed model can capture the scale effects of microstructures.

A Study on Interaction Between Pain Scale and Disability Index Owing to Gait Pattern (정상인들의 걸음형태에 따른 요통정도와 장애지수와의 관련성 조사)

  • Kwon, Hyeok-Soo
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.10 no.1
    • /
    • pp.103-116
    • /
    • 2004
  • The purpose of this study was to investigate between low back pain scale and disability index owing to gait pattern. For the period of February 1 to February 29, 2004, we had conducted a questionnaire and direct interview with 100 persons lived in Daejeon. The result were as follows: 1. The stride length of experimental group. the male was $49.9{\pm}12.9cm$. the female $45.7{\pm}12.9cm$ and the width of feet, the male was $13.5{\pm}5.7cm$, the female $12.2{\pm}4.8cm$. 2. The Fick angle of all subjects was showed in external disposition, the left angle showed in asymmetry, the male was $11.0{\pm}5.7^{\circ}$, the female $8.5{\pm}1.3^{\circ}$. 3. The foot arch was similar to sex as a weight bearing and non-weight bearing, the male was $1.3{\pm}0.8cm$, the female $1.3{\pm}0.9cm$. 4. The impedimental index according to back pain grade, men was a lower than women, the male was $5.7{\pm}6.9$ and the female $7.2{\pm}5.3$. 5. The relation to difference between foot arch and disability index according to back pain grade as a weight bearing and non-weight bearing, the higher foot arch, the higher back pain grade was statistically significance(p<.05). 6. The relation between width of feet and disability index according to back pain grade, the wider width of feet, the higher back pain grade was statistically significance(p<.01). 7. The relation between stride length and disability index according to back pain grade, the wider stride length, the higher back pain grade was statistically significance(p<.05).

  • PDF

Effect of the Chemical Treatment and Fiber Length of Kenaf on Physical Properties of HDPE/Kenaf/Expandable Microcapsule (HDPE/케나프/열팽창성 마이크로 캡슐의 물성에 미치는 섬유 길이 및 화학처리 영향)

  • Ku, Sun Gyo;Lee, Jong Won;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.270-275
    • /
    • 2016
  • High density polyethylene (HDPE)/kenaf fiber (KF) composites included two types of KF with different lengths were fabricated by using a twin screw extruder. A thermally expandable microcapsule (EMC) was used to form HDPE/KF. The KF lengths were 0.3 mm and 3 mm. The contents of KF and EMC were fixed at 20 wt% and 5 wt%, respectively. From FT-IR data of KF, which underwent chemical treatment, peaks around 1700 and $1300cm^{-1}$ decreased. This might be caused by the reduction of lignin and hemicellulose due to the chemical treatment of KF. Based on the specific gravity, thermal stability and tensile property, physical properties of the composites with a 3 mm fiber were good. However, if the fiber is longer, poor appearance might be caused due to the thermal degradation during processing. Thus, the adequate length of KF should be chosen to maintain the appearance and physical properties for industrial applications of HDPE/KF/EMC composites. The tensile strength for 0.3 mm fiber treated with chemicals increased slightly.