• Title/Summary/Keyword: physical faults

Search Result 80, Processing Time 0.025 seconds

On Performance Enhancement of CDP(Continuous Data Protection) System Using Flash SSD (Flash SSD를 이용한 CDP(Continuous Data Protection)의 성능개선)

  • Ko, Dae-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.801-807
    • /
    • 2011
  • If the System is downed by computer or disasters, it can have a bad influence on the reliability of the corporation and business continuity because all companies are computerized. Accordingly, interest on the business continuity without the loss of data in the corporate is increasing. In this paper, system faults have been defined as physical faults and logical faults and CDP solution using Flash SSD has been proposed for enhancing IOPS which is needed for realtime-backup. In order to measure IOPS performance of the CDP using Flash SSD, we constructed an experimental system. From the results we can see that IOPS performance of CDP using Flash SSD is about 50 times more effective than that of the S-ATA.

Design of Fault Diagnostic System based on Neuro-Fuzzy Scheme (퍼지-신경망 기반 고장진단 시스템의 설계)

  • Kim, Sung-Ho;Kim, Jung-Soo;Park, Tae-Hong;Lee, Jong-Ryeol;Park, Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1272-1278
    • /
    • 1999
  • A fault is considered as a variation of physical parameters; therefore the design of fault detection and identification(FDI) can be reduced to the parameter identification of a non linear system and to the association of the set of the estimated parameters with the mode of faults. Neuro-Fuzzy Inference System which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in neuro-fuzzy inference system can be effectively utilized to fault diagnosis. In this paper, we proposes an FDI system for nonlinear systems using neuro-fuzzy inference system. The proposed diagnostic system consists of two neuro-fuzzy inference systems which operate in two different modes (parallel and series-parallel mode). It generates the parameter residuals associated with each modes of faults which can be further processed by additional RBF (Radial Basis Function) network to identify the faults. The proposed FDI scheme has been tested by simulation on two-tank system.

  • PDF

A deadlock-Free Fault-Tolerant routing Method Using Partial-Adaptiveness in a N-Dimensional Meshed Network (N-차원 메쉬 네트워크에서의 부분적 적응성을 이용한 Deadlock-Free 결함포용 라우팅 기법)

  • Mun, Dae-Geun;Gam, Hak-Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.1090-1097
    • /
    • 1999
  • the multi computers operated in harsh environments should be designed to guarantee normal operations in the presence of the component faults. One solution for this is a fault-tolerant routing. In the paper, we consider n-dimensional meshed network for the basic topology and propose a simple fault-tolerant routing algorithm that can transfer messages to their destination as desired in the presence of some component faults. the built algorithms basically adopts a WormHole(WH) routing method and uses the virtual channels sharing a physical channel for deadlock-freedom. Consequently, we show that the suggested algorithm has a higher performance than the X-Y routing algorithm through simulation results.

  • PDF

Countermeasures to prevent contact between phases on overhead lines (가공송전선로 상(相)간 혼촉으로 인한 고장 예방 대책)

  • Park, Yoon-Seok;Kim, Yong-Rak;Kim, Ho-Ki;Kim, Won-Jin;Choi, Jin-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.109-110
    • /
    • 2007
  • Most transmission lines pass through mountainous terrain and deep valleys, to avoid populated areas. Accordingly, the impact of climate changes, environmental conditions and system expansion have caused an increase in transmission line system fault rates. KEPCO has developed and applied phase-spacers to reduce contact faults between phases. Contact between phases represented 9% of total line faults before the devices were installed. Phase-spacers have reduced faults by up to 3.4% since the phase-spacers were installed in 2005. Also, recently developed devices provide additional economic benefits as they cost about a third of the price as similar devices introduced in foreign countries. Phase-spacers are an effective way to prevent phase contact accidents by maintaining physical space between phases. These spacers will be implemented in areas where contacts are likely to occur. They are expected to reduce accident rates and improve power quality.

  • PDF

Implementation and Performance Analysis of a Fault-tolerant Mini-MAP System (결함 허용 Mini-MAP 시스템의 구현 및 성능해석)

  • 문홍주;박홍성;권욱현
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.3
    • /
    • pp.1-10
    • /
    • 1995
  • In this paper, a fault-tolerant Mini-MAP system with high reliability is proposed. For fault-tolerance, the LLC sublayer, MAC sublayer, and physical layer of the Mini-MAP system are dualized. The detection of faults, the replacement of the failed network, and the management of the network are three major functions required for the dualization, and they are performed by ESM(Error Supervisory Machine), EMM(Error Management Machine), and NMM(Network Management Machine) of the proposed fault-tolerant Mini-MAP system, respectively. The ring maintenance function of the MAC sublayer is used for the detection of the faults. In the proposed fault-tolerant Mini-MAP system, the data are received from both of the dualized networks and transmitted to the selected one of the two. We analyze the reliability and the MTTF(Mean Time To Failure) of the proposed fault-tolerant Mini-MAP system and show that it has better performance compared to a general Mini-MAP system.

  • PDF

A fault detection and recovery mechanism for the fault-tolerance of a Mini-MAP system (Mini-MAP 시스템의 결함 허용성을 위한 결함 감지 및 복구 기법)

  • Mun, Hong-Ju;Kwon, Wook-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.264-272
    • /
    • 1998
  • This paper proposes a fault detection and recovery mechanism for a fault-tolerant Mini-MAP system, and provides detailed techniques for its implementation. This paper considers the fault-tolerant Mini-MAP system which has dual layer structure from the LLC sublayer down to the physical layer to cope with the faults of those layers. For a good fault detection, a redundant and hierarchical fault supervision architecture is proposed and its implementation technique for a stable detection operation is provided. Information for the fault location is provided from data reported with a fault detection and obtained by an additional network diagnosis. The faults are recovered by the stand-by sparing method applied for a dual network composed of two equivalent networks. A network switch mechanism is proposed to achieve a reliable and stable network function. A fault-tolerant Mini-MAP system is implemented by applying the proposed fault detection and recovery mechanism.

  • PDF

An Adaptive Wormhole Routhing using Virtual Channels in K-ary n-cubes (K-ary n-cubes에서 가상채널을 사용한 적응적 웜홀 라우팅)

  • Lee, Sung-Mok;Kim, Chagn-Soo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.11
    • /
    • pp.2732-2744
    • /
    • 1997
  • This paper is based on multicasting model in k-ary n-cubes, and Proposes an adaptive wormhole routing algorithm which allows faults and channel contention. The proposed algorithm only requires $2{\times}n$ virtual channels per physical channel which is proportional to the dimension n in order to allow (n-1) faults in a k-ary n-cube. This method uses smaller number of virtual channels than the previously Proposed adaptive routing algorithms [5, 18]. Through a chaos simulator, we have measured message delay considering fault-tolerant as well as message traffic to our adaptive routing algorithm.

  • PDF

Stator Current Processing-Based Technique for Bearing Damage Detection in Induction Motors

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1439-1444
    • /
    • 2005
  • Induction motors are the most commonly used electrical drives because they are rugged, mechanically simple, adaptable to widely different operating conditions, and simple to control. The most common faults in squirrel-cage induction motors are bearing, stator and rotor faults. Surveys conducted by the IEEE and EPRI show that the most common fault in induction motor is bearing failure (${\sim}$40% of failure). Thence, this paper addresses experimental results for diagnosing faults with different rolling element bearing damage via motor current spectral analysis. Rolling element bearings generally consist of two rings, an inner and outer, between which a set of balls or rollers rotate in raceways. We set the experimental test bed to detect the rolling-element bearing misalignment of 3 type induction motors with normal condition bearing system, shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. This paper takes the initial step of investigating the efficacy of current monitoring for bearing fault detection by incipient bearing failure. The failure modes are reviewed and the characteristics of bearing frequency associated with the physical construction of the bearings are defined. The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT, Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. The test results clearly illustrate that the stator signature can be used to identify the presence of a bearing fault.

  • PDF

The Design of Self Testing Comparator (자체시험(Self-Testing) 특성을 갖는 비교기(Comparator) 설계)

  • 양성현;이상훈
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.2
    • /
    • pp.219-228
    • /
    • 2001
  • This paper presents the implementation of comparator which are Fail-Safe with respect to faults caused by any single physical defect likely to occur in NMOS and CMOS integrated circuit. The goal is to use it at the Fail-Safe system. First, a new fault model for PLA(Programmable Logic Array) is presented. This model reflects several physical defects in VLSI circuits. It focuses on designs based on PLA because VLSI chips are far too complex to allow detailed analysis of all the possible physical defects that can occur and of the effects on the operation of the circuit. Second, this paper show that these design, which was implemented with 2 level AND_ORor NOR-NOR circuit, are optimal in term of size. And it also present a formal proof that a comparator implemented as NOR-NOR PLA, based on these design, is self-testing with respect to most single faults in the presented fault model. Finally, it discuss the application of the self-testing comparator as a building block for implementing Fail-Safe Adder.

  • PDF

Model-based Autonomic Computing Framework for Cyber-Physical Systems (CPS를 위한 모델 기반 자율 컴퓨팅 프레임워크)

  • Kang, Sungjoo;Chun, Ingeol;Park, Jeongmin;Kim, Wontae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.5
    • /
    • pp.267-275
    • /
    • 2012
  • In this paper, we present the model-based autonomic computing framework for a cyber-physical system which provides a self-management and a self-adaptation characteristics. A development process using this framework consists of two phases: a design phase in which a developer models faults, normal status constrains, and goals of the CPS, and an operational phase in which an autonomic computing engine operates monitor-analysis-plan-execute(MAPE) cycle for managed resources of the CPS. We design a hierachical architecture for autonomic computing engines and adopt the Model Reference Adaptive Control(MRAC) as a basic feedback loop model to separate goals and resource management. According to the GroundVehicle example, we demonstrate the effectiveness of the framework.