• Title/Summary/Keyword: physical constraints

Search Result 357, Processing Time 0.027 seconds

Advances in Cyber-Physical Systems Research

  • Wan, Jiafu;Yan, Hehua;Suo, Hui;Li, Fang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.1891-1908
    • /
    • 2011
  • Cyber-physical systems (CPSs) are an emerging discipline that involves engineered computing and communicating systems interfacing the physical world. The widespread applications of CPSs still face enormous challenges because of the lack of theoretical foundations. In this technical survey, we review state-of-the-art design techniques from various angles. The aim of this work is to provide a better understanding of this emerging multidisciplinary methodology. The features of CPSs are described, and the research progress is analyzed using the following aspects: energy management, network security, data transmission and management, model-based design, control technique, and system resource allocation. We focus on CPS resource optimization, and propose a system performance optimization model with resource constraints. In addition, some classic applications (e.g., integrating intelligent road with unmanned vehicle) are provided to show that the prospects of CPSs are promising. Furthermore, research challenges and suggestions for future work are outlined in brief.

ON THE IMPORTANCE OF USING APPROPRIATE SPECTRAL MODELS TO DERIVE PHYSICAL PROPERTIES OF GALAXIES

  • PACIFICI, CAMILLA;DA CUNHA, ELISABETE;CHARLOT, STEPHANE;YI, SUKYOUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.535-537
    • /
    • 2015
  • Interpreting ultraviolet-to-infrared (UV-to-IR) observations of galaxies in terms of constraints on physical parameters-such as stellar mass ($M_{\ast}$) and star formation rate (SFR)-requires spectral synthesis modelling. We investigate how increasing the level of sophistication of the standard simplifying assumptions of such models can improve estimates of galaxy physical parameters. To achieve this, we compile a sample of 1048 galaxies at redshifts 0.7 < z < 2.8 with accurate photometry at rest-frame UV to near-IR wavelengths from the 3D-HST Survey. We compare the spectral energy distributions of these galaxies with those from different model spectral libraries to derive estimates of the physical parameters. We find that spectral libraries including sophisticated descriptions of galaxy star formation histories (SFHs) and prescriptions for attenuation by dust and nebular emission provide a much better representation of the observations than 'classical' spectral libraries, in which galaxy SFHs are assumed to be exponentially declining functions of time, associated with a simple prescription for dust attenuation free of nebular emission. As a result, for the galaxies in our sample, $M_{\ast}$ derived using classical spectral libraries tends to be systematically overestimated and SFRs systematically underestimated relative to the values derived adopting a more realistic spectral library. We conclude that the sophisticated approach considered here is required to reliably interpret fundamental diagnostics of galaxy evolution.

Effect of Masticating Chewing Gum on the Balance of Stroke Patients

  • Gim, Mina;Choi, Junghyun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.12 no.2
    • /
    • pp.2370-2374
    • /
    • 2021
  • Background: Masticating is an activity that is free from temporal or spatial constraints, with an advantage that it can be combined easily with other treatment methods. While several studies have reported a positive effect of the intervention of chewing using the jaw on postural stability, only a few studies were conducted on stroke patients. Objectives: To investigated the effects of masticating chewing gum on the static and dynamic balancing of stroke patients. Design: Randomized cross-over study design. Methods: Nineteen stroke patients were randomly assigned to the chewing group or control group. BT4 was used to measure the static and dynamic balancing abilities. Pre-test measurements were taken before mastication of chewing gum, and post-test measurements were taken after 2 days. The stroke patients in the chewing group were guided to sit on a chair and chew gum for 3 min, and their balancing abilities were simultaneously measured. The balancing abilities of the control group patients were measured while they sat at rest without masticating chewing gum. Results: The chewing group showed significant increases in the measures of static balance (i.e., C90 area, trace length, X mean, and Y mean). In the between-group comparison, the measures of static balance were significantly higher in the chewing group than in the control group. Conclusion: These findings suggest that masticating chewing gum enhanced the static balancing ability of stroke patients. Thus, gum chewing should be considered a viable clinical intervention to control posture in stroke patients.

An Algorithm for Virtual Topology Design in WDM optical Networks under Physical constraints. (파장분할다중화방식 전광통신망에서 물리적 제약을 고려한 가상망 설계 알고리즘)

  • 유지연;김상완;서승우;장문종;우희곤
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.443-450
    • /
    • 2000
  • Although designing a virtual topology for all-optical WDM wide-area networks has been extensively studied and several algorithms have been proposed, these algorithms assumed error-free communication between two nodes. However, noises from optical amplifiers and optical cross-connects can degraded the signal, resulting in a nonzero bit-error rate. In this paper, we investigate the effect of physical limitations on the virtual topology design. We show that for side-area all-optical networks where transmission distance is fairly long, virtual topology design algorithm that can determine the locations of opto-electronic(OE) and electro-optic(EO) conversions to set up a connection request with a high BER in a multihop manner.

  • PDF

Capacity Firming for Wind Generation using One-Step Model Predictive Control and Battery Energy Storage System

  • Robles, Micro Daryl;Kim, Jung-Su;Song, Hwachang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2043-2050
    • /
    • 2017
  • This paper presents two MPC (Model Predictive Control) based charging and discharging algorithms of BESS (Battery Energy Storage System) for capacity firming of wind generation. To deal with the intermittency of the output of wind generation, a single BESS is employed. The proposed algorithms not only make the output of combined systems of wind generation and BESS track the predefined reference, but also keep the SoC (State of Charge) of BESS within its physical limitation. Since the proposed algorithms are both presented in simple if-then statements which are the optimal solutions of related optimization problems, they are both easy to implement in a real-time system. Finally, simulations of the two strategies are done using a realistic wind farm library and a BESS model. The results on both simulations show that the proposed algorithms effectively achieve capacity firming while fulfilling all physical constraints.

Review on RTL-GDS Methodology for VDSM Process (VDSM 공정에서 적용되는 RTL-to-GDS Methodology 검토 및 적용)

  • 권오철;정길임;김주선;배점한
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.132-135
    • /
    • 2000
  • We have been aware fer some time. that it is becoming harder to develop ASIC only, using the vendor wire model for the current top-down/bottom-up process. Because VDSM has a much bigger wired delay than cell delay, it is also difficult to reduce development time, as well as time-to-market, while developing several million gate ASIC's. The same is true for high frequency ASIC's with VDSM (which have larger wire delay versus cell delay). Therefore, a solution called “RTS-GDS”, using physical constraints fur SOC with timing met, is being actively discussed. This paper suggests a methodology for SOC development by utilizing a top down flow via CWLM along with discussing potential problems. This paper also provides a design flow, including physical synthesis, DFT, floor plan and CWLM, all of which are relevant to proper SOC development.

  • PDF

Improvement and quasi optical analysis of wide band prototype feedhorn for ASTE focal plane array

  • Lee, Bangwon;Gonzalez, Alvaro;Lee, Jung-won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.57.1-57.1
    • /
    • 2017
  • As an upgrade we report the current ASTE ultra-wideband corrugated horn design. The length of the feedhorn gets shortened from 12.5 mm to 11 mm, and it shows better side lobe level at the far-field patterns compared with the previous design. We looked into possible quasi-optical solution to match the feedhorn beam to the optics of the current ASTE telescope, starting from frequency-independent solution using two ellipsoidal mirrors to which wideband performance of the feedhorn naturally fits. We used a commercial physical optics package (GRASP) with an user-defined optimizer to give physical constraints to evaluated optical designs for highest efficiency.

  • PDF

Effects of Artificial Vibrations on Strength and Physical Properties of Curing Concrete (인공진동의 크기가 양생콘크리트의 강도와 물성에 미치는 영향)

  • 임한욱;정동호;이상은
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 1994
  • The effects of blasting and ground vibratons on curing concrete have not been well studied. As a results unrealistic and costly ground vibration constraints have been placed on blasting and piling when it occurs in the vicinity of curing concrete. To study the effects of ground vibrations, a shaking table was made to produce peak particle velocities in the nearly same frequency range as found in construction blasting. Concrete blocks of 33.3X27.7X16.2cm were molded and placed on the shaking table. Different sets of concrete blocks were subjected to peak vibrations of 0.25, 0.5, 1.0, 5.0 and 10cm/sec. The impulses were applied at two hour intervals for thirty seconds. Along with unvibrated concrete blocks, the vibrated concrete samples with 60.3mm in diameters were measured for elastic moduli, sonic velocity, tensile and uniaxial compressive strength. Test results showed that the vibrations in curing concrete generally have effects on the uniaxial compressive strength or physical properties of the concrete.

  • PDF

Generation of Synthetic Particle Images for Particle Image Velocimetry using Physics-Informed Neural Network (물리 기반 인공신경망을 이용한 PIV용 합성 입자이미지 생성)

  • Hyeon Jo Choi;Myeong Hyeon, Shin;Jong Ho, Park;Jinsoo Park
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • Acquiring experimental data for PIV verification or machine learning training data is resource-demanding, leading to an increasing interest in synthetic particle images as simulation data. Conventional synthetic particle image generation algorithms do not follow physical laws, and the use of CFD is time-consuming and requires computing resources. In this study, we propose a new method for synthetic particle image generation, based on a Physics-Informed Neural Networks(PINN). The PINN is utilized to infer the flow fields, enabling the generation of synthetic particle images that follow physical laws with reduced computation time and have no constraints on spatial resolution compared to CFD. The proposed method is expected to contribute to the verification of PIV algorithms.

PSYCHO-PHYSICAL ANALYSIS OF PAPER AND A NEW DESIGN CONCEPT OF PAPER MEDIA FOR THE NEXT CENTURY

  • Fumihiko ONABE
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.209-213
    • /
    • 1999
  • In the society of the 21\ulcorner century under multiphase media conditions, the rapidly glowing electronic media will replace the conventional paper media in a variety of areas. However, if human being still has an affinity for paper media and an instinct for hardcopy from electronic-based text or image, the new market will be created for the paper industry. To what extent the consumer choses paper media for output will depend upon the availability of functions of paper media appealing to human senses; i.e., "sensory functions of paper". As a whole, on-demand type personal as well as business communications will increase in the next century and this trend will lead certainly to a rapidly expanding "contents hardcopy market". The technological progress of the paper industry in the 21\ulcorner century depends upon the market needs for higher products quality and higher efficiency of manufacturing process as well as an endeavour to overcome constraints from forest resource, energy, and environmental issues. Under the conditions with above constraints, the paper media will be polarized into two categories; (1)paper for higher image reproduction capability for original image or text and (2)paper for lower reproduction but with higher appeals for human senses. To cope with these trends, psycho-physical analysis and a sensory engineering approach for developing new paper media is vitally required. Also newly emerged roles of paper physics in the multimedia age is pointed out associated with sensory functions of paper that are not well-understood so far.