• Title/Summary/Keyword: physical and chemistry properties

Search Result 767, Processing Time 0.028 seconds

The Effects of Ethanol on Nano-emulsion Prepared by High-energy Emulsification Method (고에너지유화법을 이용하여 제조한 나노에멀젼에 대한 에탄올의 영향)

  • Won, Bo-Ryoung;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.3
    • /
    • pp.179-191
    • /
    • 2009
  • The objective of this study was to investigate the effect of ethanol on the emulsion prepared by poly(oxyethylene) hydrogenated castor oils (HCOs)/oil/ethanol/water system. Emulsions were prepared using homogenizer as high-energy method. To evaluate effect of ethanol on the emulsion, physical properties such as droplet size and size distribution were determined and other components were almost fixed to analyze the effect of ethanol on the surfactant. In case of HCO-20, the droplet diameter was in micrometers and the droplet size was gradually deceased as the ethanol concentration was increased. The droplet diameter of nano-emulsion containing 4.00 % of HCO-30 was shown in nanometers and its mean droplet size was $128.15{\pm}1.06nm$ and the most stable at the 4.25 % of ethanol contents by the Form. 1 and $136.10{\pm}0.99nm$ at the 3.50 % of ethanol contents by the Form. 2. Similarly, the droplet diameter of nano-emulsion containing 4.00 % of HCO-40 and 4.50 % ethanol by the Form. 1 was $115.85{\pm}0.78nm$ and $121.15{\pm}0.35nm$ at the 3.25 % of ethanol by the Form. 2 and both size distributions were also narrow. Finally, the droplet size of nano-emulsion containing 4.00 % of HCO-60 and 2.25 % ethanol was $262.35{\pm}0.64nm$ and the most stable. The higher ethanol concentrations became the smaller size of emulsion became in the microscale emulsion but we determined nano-emulsion had a minimum size at a certain ethanol concentration. The results showed that the breakdown process of this nano-emulsion could be attributed to Ostwald ripening. This study about effect of ethanol on the emulsion showed that ethanol contents to prepare a stable emulsion could be determined as studying the effect of ethanol on the emulsion with the type of surfactants.

Characteristics of Polyester Polymer Concretes Using Spherical Aggregates from Industrial By-Products (III) (Using an Atomizing Steel Slag as a Filler and Fine Aggregate) (산업부산물 구형골재를 사용한 폴리에스테르 폴리머 콘크리트의 특성(III) (아토마이징 제강슬래그를 충전재와 잔골재로 사용))

  • Hwang, Eui-Hwan;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.104-110
    • /
    • 2015
  • It is known that polymer concretes are 8~10 times more expensive than ordinary Portland cement concretes; therefore, in the production of polymer concrete products, it is very important to reduce the amount of polymer binders used because this occupies the most of the production cost of polymer concretes. In order to develop a technology for the reduction of polymer binders, smooth and spherical aggregates were prepared by the atomizing technology using the oxidation process steel slag (electric arc furnace slag, EAFS) and the reduction process steel slag (ladle furnace slag, LFS) generated by steel industries. A reduction in the amount of polymer binders used was expected because of an improvement in the workability of polymer concretes as a result of the ball-bearing effect and maximum filling effect in case the polymer concrete was prepared using the smooth and spherical atomized steel slag instead of the calcium carbonate (filler) and river sand (fine aggregate) that were generally used in polymer concretes. To investigate physical properties of the polymer concrete, specimens of the polymer concrete were prepared with various proportions of polymer binder and replacement ratios of the atomized reduction process steel slag. The results showed that the compressive strengths of the specimens increased gradually along with the higher replacement ratios of the atomized steel slag, but the flexural strength showed a different maximum strength depending on the addition ratio of polymer binders. In the hot water resistance test, the compressive strength, flexural strength, bulk density, and average pore diameter decreased; but the total pore volume and porosity increased. It was found that the polymer concrete developed in this study was able to have a 19% reduction in the amount of polymer binders compared with that of the conventional product because of the remarkable improvement in the workability of polymer concretes using the spherical atomized oxidation steel slag and atomized reduction steel slag instead of the calcium carbonate and river sand.

The Physical and Chemical Properties and Cytotoxic Effects of Acer tegmentosum Maxim. Extracts (산겨릅나무 추출물의 이화학적 특성과 암세포 성장 억제 효과)

  • Shin, In-Cheol;Sa, Jae-Hoon;Shim, Tae-Heum;Lee, Jin-Ha
    • Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.322-327
    • /
    • 2006
  • Food constituents analysis of Acer tegmentosum. Maxim.(Acer TM) stem was carried out according to AOAC method, and the antiradical activity on DPPH and cytotoxicity on human cell lines (AGS, HepG2, A549, MCF-7 and Chang) for the 80% ethylalcohol(EtOH) extracts of Acer TM stem were studied. The antiradical activity on DPPH radical of the ethylacetate(EtOAc) fraction of the bark showed a higher activity than that of $\alpha$-tocopherol, ascorbic acid and BHT. The inhibition activity of the 80% EtOH extracts from Acer TM stem on human cancer cell lines by SRB assay indicated a dose-dependent growth inhibition on most human carcinoma cells. The growth inhibition rate of each human cancer cell line showed 91.3% to AGS, 75.0% to A549, 74.1% to HepG2, and 70.2% to MCF-7 cells, respectively, when the 80% EtOH extract(1 mg/ml) of Acer TM stem was added.

Heat Shield Property of Nanostructural-regulated Fe2O3/TiO2 Composites Filled with Polyacrylate Paint (나노구조 변화에 의한 Fe2O3/TiO2 복합재료를 충전한 Poly Acrylate 도료의 열차단 특성)

  • Kim, Dae Won;Ma, Young Kil;Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.43-48
    • /
    • 2020
  • Fe2O3 nanoparticles with the mixed structure of cubic and nanorod were synthesized by precipitation, hydrothermal, sol-gel method, etching process and heat treatment. Fe2O3/TiO2 core-shell (CS) of type Fe2O3@TiO2 composite was fabricated on a 20 nm nanolayer of TiO2 coated on the surface of Fe2O3 nanoparticles. Fe2O3/TiO2 yolk-shell (YS) composite was prepared by chemical etching and heat treatment of Fe2O3/TiO2 CS nanoparticles. Physical properties of Fe2O3, Fe2O3@TiO2 CS and Fe2O3@TiO2 YS nanoparticles were characterized by FE-SEM, HR-TEM and X-ray diffraction. The solar reflectance, commission internationale de l'Elcairage (CIE) color coordinate and heat shield temperatures of Fe2O3, CS and YS type Fe2O3@TiO2 pigments filled with poly acrylate (PA) paints were investigated by UV-Vis-NIR spectrometer and homemade heat shield temperature measuring device. The Fe2O3@TiO2 YS red pigment filled PA composite exhibited excellent near infrared light reflecting performance and also reduced the heat shield temperature of 13 ℃ than that of Fe2O3 filled counterparts.

Physico-Chemical Properties of Aggregate By-Products as Artificial Soil Materials (골재 부산물의 용토재 활용을 위한 특성 분석)

  • Yang, Su-Chan;Jung, Yeong-Sang;Kim, Dong-Wook;Shim, Gyu-Seop
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.418-428
    • /
    • 2007
  • Physical and chemical properties of the aggregate by-products including sludge and crushed dust samples collected from the 21 private companies throughout the country were analyzed to evaluate possible usage of the by-products as artificial soil materials for plantation. The pH of the materials ranged from 8.0 to 11.0. The organic matter content was $2.85g\;kg^{-1}$, and the total nitrogen content and available phosphate content were low as 0.7 percents and $12.98mg\;kg^{-1}$, respectively. Exchangeable $Ca^{2+}$, $Mg^{2+}$, $K^+$, and $Na^+$ were 2.29, 0.47, 0.02 and $0.05cmol\;kg^{-1}$, respectively. Heavy metal contents were lower than the limits regulated by environmental law of Korea. Textural analysis showed that most of the materials were silt loam with low water holding capacity ranged from 0.67 to 7.41 percents, and with low hydraulic conductivity ranged from 0.4 to $2.8m\;s^{-1}$. Mineralogical analysis showed that the aggregate by product materials were mostly composed of silicate, alumina and ferric oxides except calcium oxide dominant materials derived from limestones. The primary minerals were quartz, feldspars and dolomites derived from granite and granitic gneiss materials. Some samples derived from limestone material showed calcite and graphite together with the above minerals. According to the result, it can be concluded that the materials could be used as the artificial soil material for plantation after proper improvement of the physico-chemical properties and fertility.

Impacts of Oyster Shell and Peat Treatments on Soil Properties in Continuous Watermelon Cropping Greenhouse Plots (패화석 및 이탄 처리가 수박 연작지 토양의 특성에 미치는 영향)

  • Ahn, Byung-Koo;Lee, Jin-Ho;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.438-445
    • /
    • 2010
  • Soils in continuous monoculture cropping system generally have a number of physical and chemical problems. Thus, we studied to investigate selected soil properties in continuous watermelon cropping plots with applications of different soil management practices: 1) conventional farming practice (CFP), 2) chemical fertilizer management practice (FMP), the FMP with different amounts, 0.5, 1.0, and 1.5 t $ha^{-1}$, of oyster shell meal application (FMP-OS 0.5, 1.0, and 1.5 t $ha^{-1}$), and 3) the FMP with different amounts, 2.0, 3.0, and 4.0 t $ha^{-1}$, of peat application (FMP-PT 2.0, 3.0, and 4.0 t $ha^{-1}$) and also to evaluate watermelon quality. Soil pH slightly increased only in the FMP-OS 1.5 t $ha^{-1}$ plot, while it was not changed or decreased a little in other plots. The contents of soil organic matter (SOM) expectedly increased in the FMP-PT plots, whereas it markedly decreased in the FMP-OS plots. The concentrations of exchangeable cations, $Ca^{2+}$, $Mg^{2+}$, and $K^+$, in soils were mostly dropped down in most of the FMP and FMP-PT plots. Otherwise, the exchangeable $Ca^{2+}$ concentration increased a bit in the FMP-OS plots. Also, the concentrations of water-soluble anions, $NO_3^-$, $Cl^-$, ${SO_4}^{2-}$, and ${PO_4}^{3-}$, in soils mostly declined in all the plots applied with the different management practices during the study years. Due to the cation and anion decreases, the electrical conductivity (EC) values in the soils were greatly reduced in the plots. Thus, the soil management practices applied, especially oyster shell meal and peat treatments, might be useful to control soil conditions. However, watermelon quality, such as sugar content and fruit weight, would not be associated with the soil management practices applied.

The Use of Green Manure Crops as a Nitrogen Source for Lettuce and Chinese Cabbage Production in Greenhouse (녹비작물의 토양환원이 상추 및 얼갈이 배추의 수량에 미치는 영향)

  • Lim, Tae-Jun;Kim, Ki-In;Park, Jin-Myeon;Lee, Seong-Eun;Hong, Soon-Dal
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.3
    • /
    • pp.212-216
    • /
    • 2012
  • BACKGROUND: Green manure and graminaceousmanure crops have several benefits, such as improving soil physical and chemical properties and utilizing excessive greenhouse nutrients that they have a potential to be a water pollutant source. METHODS AND RESULTS: The objective of this study was to investigate nitrogen (N) supplying capabilities of green manure and graminaceous manure crops for lettuce (Lactuca sativa L.) and Chinese cabbage (Brassica campestris L.) grown under greenhouse conditions. For this two leguminous manures (Crotalaria juncea (Cr.) and Sesbaniaexaltata (Se.)) and two graminaceous manures (Sorghum bicolor; Haussolgo(Ha.) and Sudangrass (Sg.)) in the greenhouse were grown, cut, and incorporated into the greenhouse soil before planting. Chemical nitrogen (N) fertilizer rate was estimated based on N recommendation for lettuce and Chinese cabbage. 100% of the N recommended rates (1N) were 70 kg N $ha^{-1}$ for lettuce and 60 kg N $ha^{-1}$ for Chinese cabbage and 50% of the N recommendation rates (0.5N) were 35 kg N $ha^{-1}$ for lettuce and 30 kg N $ha^{-1}$ for Chinese cabbage. Nitrogen treatments were control (0N), Cr., Se., Cr + 0.5 N, Se + 0.5 N, Ha + 0.5 N, Sg + 0.5 N, and N recommendation rate (1N). Incorporated N from green manure and graminaceous manure crops were 130, 116, 93, and 87 kg N $ha^{-1}$ for Cr., Se., Ha., and Sg., respectively. Lettuce and Chinese cabbage were grown after incorporated green manure crops into the greenhouse soil. There was no significant difference in lettuce and Chinese cabbage yields under N treatments except control (0 kg/ha). Nitrogen use efficiency (NUE)was from 44% to 73% and the highest NUE was under Se. treatment. Although yields were not statistically different under N treatments except control, actual yield increase ranged from 170 to 1,100 kg/ha for lettuce and ranged from 2,770 to 5,210 kg/ha for Chinese cabbage compared to yield under N recommendation rate. Estimated economic benefit from this would be higher approximately between \2,770,000 and \5,210,000/ha under N treatments except control than the N recommendation rate. CONCLUSION: These results suggest that incorporating green manure crops, such as Cr. and SeSe. into soil or adding 0.5 N after incorporation of them can be beneficial in many ways in that it increases economic return because of yield increase, reduces the use of chemical N, and decreases the negative environmental impact on water quality because excessive N in the greenhouse soil can be used by green manure crops during the fallow.