• Title/Summary/Keyword: physical and chemical properties

Search Result 2,925, Processing Time 0.036 seconds

Physical and Chemical Properties of Soil in Jang-San Wetland, Busan Metropolitan City (부산시 장산습지 토양의 물리적 및 화학적 특성)

  • Cha, Eun-Jee;Hamm, Se-Yeong;Kim, Hyun-Ji;Lee, Jeong-Hwan;Ok, Soon-Il
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1363-1374
    • /
    • 2010
  • This study examined the physical and chemical properties of soil in Jang-San wetland in Busan Metropolitan City. The wetland covers wide and flat area comparing to its outside. The samples of the wetland soil were collected and analyzed in order to identify the profiles and chemical properties. According to the analyses of soil moisture and particle size distribution, the wetland soil mostly belongs to sandy loam with the soil moistures of 14.9-153.2%. The soil profiles are configured with O, A, B, and C horizons from the land surface. The organic matter content (2.38-16.7%) at most sampling locations decreases downwardly with the highest at 0-20 cm depth. The organic matter content has a good positive relationship with soil moisture content. According to X-ray diffraction analysis, the wetland soils contain quartz and feldspar (the main components of rhyolite porphyry) as well as montmorillonite, gibbsite, and kaolinite (the weathered products of feldspar). The wetland soil displays the highest iron concentration (average 22,052 mg/kg), indicating oxidation of iron. High concentrations of potassium (average 17,822 mg/kg) and sodium (average 5,394 mg/kg) originate from the weathering of feldspar. Among anions, sulfate concentration is highest with average 9.21 mg/kg that may originate from sulfate minerals and atmosphere.

Preparation and Physical Properties of the Polyurethane Microgels Based on Poly(caprolactone) diol/Poly(ethylene glycol) (Poly(caprolactone) diol/Poly(ethylene glycol)을 기초로 한 폴리우레탄 마이크로겔의 합성 및 특성)

  • Lim, Jeong-Soo;Kim, Kong-Soo;Lee, Moo-Jae;Lee, Young-Geun
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.41-48
    • /
    • 2001
  • Polyurethane(PU) microgels were synthesized from poly(caprolactone) diol(PCD) and/or poly(ethylene glycol)(PEG), diisocyanate and 1,2,6-hexane triol by solution polymerization method. A critical gelation concentration of the PU microgels with, mole ratios of PCD/PEG were the important factors influencing the formation and property microgel or macrogels. The physical and thermal properties of the PU microgels prepared with depending upon the structure of diisocyanate, mole ratio of PCD/PEG, and molecular weight of PEG were investigated. It was found that PU microgels were distributed by polydisperse, spherical small particles below 300nm and showed the properties of low viscosity.

  • PDF

Synthesis of Modified Silane Acrylic Resins and Their Physical Properties as Weather-Resistant Coatings

  • Yoo, Gyu-Yeol;Kim, Ji-Hyun;Park, Hong-Soo;Kim, Young-Geun;Kim, Seong-Kil
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • To prepare weather-resistant modified silane acrylic resin coatings for an architectural purpose, tetrapolymers were synthesized by radical polymerization. 3-Methacryloxypropyltrimethoxysilane (MPTS) as a silicone monomer and n-butyl acrylate, methyl methacrylate, and n-butyl methacrylate as acrylic monomers were used. The composition of monomers was adjusted to fix the glass transition temperature of acrylic polymer for $20^{\circ}C$. The composition of MPTS in the synthesized polymer were varied from 10 wt% to 30 wt%. On the basis of synthesized resin amber paints were prepared and their physical properties and effects on weatherability were examined. The presence of MPTS in modified silane acrylic resins generally resulted in low molecular weight and broad molecular weight distribution, and also lowered the viscosity of the copolymers. The coated films prepared from these resins showed good and balanced properties in general. Adhesion to the substrate was outstanding in particular. Weatherability tests were carried out in three different types such as outdoor exposure, QUV, and SWO. The test results showed that the modified silane acrylic resins containing 30 wt% of MPTS had superior weathering properties.

A Study for the Physical Properties of Artificial Admixtured with β-NSF Base & Vinsol Base Surfactants (β-NSF계와 빈졸계 계면활성제로 변성된 인조석의 물성)

  • Cho, Heon-young;Park, Seong-ki;Suh, Jung-mok;Kim, Jin-man
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.592-598
    • /
    • 1999
  • Exterior finishing materials of artificial stones are manufactured with the mixture of water, cement, stone powder and light-weight aggregate. In this research, we tried to find a way of increasing the physical properties and decreasing the manufacturing cost of artificial stone. So, we used ${\beta}$-NSF base surfactant and vinsol base surfactant to the artificial stone mixture instead of light-weight aggregate. The optimum dosage of the ${\beta}$-NSF and vinsol surfactants for artificial stone are found to be 1.0 wt % of cement, respectively. The physical properties increased ca. 20% and the durability for freezing & thawing of the new artificial stone increased ca. 300%. While the manufacturing cost of the new artificial stone decreased as much as 30%.

  • PDF

A Study of the Changes in Physical and Chemical Properities of Oil Used in Gasoline and LPG Engine (가솔린 LPG 엔진오일의 사용에 따른 물리적, 화학적 성질의 변화에 관한 연구)

  • 강석춘;신성철;김동길;노장섭
    • Tribology and Lubricants
    • /
    • v.10 no.4
    • /
    • pp.59-68
    • /
    • 1994
  • This study is concerned with the change of physical and chemical properties of the used oil in gasoline and LPG engine. The used oils of engine were sampled from dynamometer and cars. The field tests of car were done in city and on highway. The properties of oil were TAN, TBN, visocity, oxidation, ZDTP depletion factor and etc. Also the relation between the chemical change and antiwear property was studied. From the study, it was shown that the decrease of antiwear property of used oil was depended on the changes of ZDTP depletion factor as well as TAN (total acid number). Also, it was found that the oil used by LPG car was deteriorated within the shortest distance among the other gasoline cars. The antiwear property of oil decreased as the running distance increased. The gasoline engine oil drove mainly on highway was the least deteriorate of properities for the same running distance.

Adsorption Equilibrium of Bovine Serum Albumin Protein on Porous Polymer Microgels (다공성 고분자 마이크로겔의 Bovine Serum Albumin 단백질의 흡착평형)

  • Kim, Kong-Soo;Kang, Seog-Ho
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.311-316
    • /
    • 1998
  • The adsorption equilibrium properties of bovine serum albumin(BSA-protein) for three kinds of porous microgels with different physical and chemical features were investigated. The adsorption amount of BSA-protein on poly(butyl methacrylate)(PBMA) microgels was higher than those on poly(vinyl pyridine)(PVP) and poly(acrylonitrile) (PAN) microgels due to the hydrophobic interaction between polymer and protein in an aqueous solution. And PBMA microgels had more irreversible adsorption equilibrium properties the PVP and PAN microgels. It implies that hydrophobic interaction plays a more important role in adsorption properties of BAS-protein than physical properties of polymer and electrostatic attraction between protein and polymer microgels. Characteristics of the microgels used in this study followed Langmuir equation better than the Freundlich equation.

  • PDF

Preparation and Curing Behavior of Two-Packaged Polyurethane Coatings by Benzoic Acid Lactone Modified Polyester/HDI-Biuret (벤조산 락톤 변성폴리에스테르/HDI-Biuret에 의한 2액형 폴리우레탄 도료의 제조 및 경화거동)

  • Seo, Kum-Jong;Kwon, Soon-Yong;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.59-66
    • /
    • 1998
  • Two-packaged polyurethane coatings were prepared by blending benzoic acid lactone modified polyester polyol(BLMPs) and HDI-biuret. BLMPs were synthesized by polycondensation of benzoic acid, viscosity depression component, with 1,4-butanediol, adipic acid, and polycaprolactone polyol. Kinematic viscosity of BLMP was gradually decreased with increasing benzoic acid content in BLMP. The low viscosity of modified polyester has an advantage of making a high-solid content coatings. After the film was coated with the prepared polyurethane coatings and cured at room temperature, the various physical properties were measured. They showed good physical properties such as flexibility, impact resistance, cross hatch adhesion, yellowness index, and rust resistance. These advantages are the results of introducing polycaprolactone polyol.

Surface modification of polymeric membranes for low protein binding

  • Higuchi, Akon;Tamai, Miho;Tagawa, Yoh-Ichi;Chang, Yung;Ling, Qing-Dong
    • Membrane and Water Treatment
    • /
    • v.1 no.2
    • /
    • pp.103-120
    • /
    • 2010
  • Surface modification of microfiltration and ultrafiltration membranes has been widely used to improve the protein adsorption resistance and permeation properties of hydrophobic membranes. Several surface modification methods for converting conventional membranes into low-protein-binding membranes are reviewed. They are categorized as either physical modification or chemical modification of the membrane surface. Physical modification of the membrane surface can be achieved by coating it with hydrophilic polymers, hydrophilic-hydrophobic copolymers, surfactants or proteins. Another method of physical modification is plasma treatment with gases. A hydrophilic membrane surface can be also generated during phase-inverted micro-separation during membrane formation, by blending hydrophilic or hydrophilic-hydrophobic polymers with a hydrophobic base membrane polymer. The most widely used method of chemical modification is surface grafting of a hydrophilic polymer by UV polymerization because it is the easiest method; the membranes are dipped into monomers with and without photo-initiators, then irradiated with UV. Plasma-induced polymerization of hydrophilic monomers on the surface is another popular method, and surface chemical reactions have also been developed by several researchers. Several important examples of physical and chemical modifications of membrane surfaces for low-protein-binding are summarized in this article.

The Soil Improvement and Plant Growth on the Newly-Reclaimed Sloped land VI. Relationship between annual change of soil phsico-chemical properties and yield of silage corn (신개간경사지 토양개량과 작물생육에 관한 연구 VI. 토양의 물리화학성 년차간 변화가 옥수수 청예수량에 미치는 영향)

  • 허봉구;김무성
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.11 no.1
    • /
    • pp.22-29
    • /
    • 1991
  • This study was experimented to obtain the basic information on the changeable aspect and improvement of soil fertility in newly-reclaimed sloped land. Silage corn was cultivated under the six different treatments for 4 years. The relation between the amount or ratio of annual changes of soil physico-chemical properties and yield of silage corn were analyzed. Soil bulk density was decreased in 3rd year at topsoil, but that decreased in 4th year at subsoil. Soil organic matter also decreased in 2nd year at topsoil, and decreased continuously at subsoil. Bulk density and hardness of soil depths showed significant negative simple correlation with dry matter yield and cation exchange capacity showed positive. Correlation coefficient of chemical properties with dry matter yield were low. The range of annual changes of moisture percent, hardness and organic matter were wider than the other properties. The significantly different of physical properties were higher than the chemical properties, and those of topsoil were higher than subsoil. According to multiple regression between yield and physico-chemical properties of subsoil, bulk density and cation exchange capacity were in the greatest contribution at the variations, but bulk density was greatest at the ratios.

  • PDF

Soil Physico-chemical Properties of Organic Grapes Farms with Different Culture Facilities and Soil Management Practices

  • Kim, Sun-Kook;Kim, Byeong-Sam;Kang, Beom-Ryong;Yang, Seung-Koo;Kim, Byeong-Ho;Kim, Hee-Kwon;Kim, Hyun-Woo;Choi, Kyeong-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.399-407
    • /
    • 2013
  • Organic grape was generally produced in rainshield or plastic greenhouse culture while most of fruits were produced in open field. But little attention has been given to soil properties with different culture facilities in organic grape cultivation. This study was conducted to investigate soil physico-chemical properties of organic grapes farms with different culture facilities and soil management practices. Organic fertilizer was main resource to manage soil at organic grapes farms. Organic grapes farms were applied with total amount of organic fertilizer at one time, either at basal or additional fertilization, whereas conventional grapes farms applied with split fertilization. Bulk density and penetration resistance of soil were lower at both rainshield and green manure-applied plastic greenhouse cultures than those at clean plastic greenhouse culture. Especially, in plastic greenhouse, sod culture with natural weed after green manure application was more effective than general sod culture in improving physical properties of the rhizosphere. The contents of organic matter, available phosphate and exchangeable potassium tended to increase in the soils applied with green manure, and the difference of soil chemical properties were significant between rainshield and plastic greenhouse cultures. The optimum soil management was required in plastic greenhouse because pH, available phosphate and exchangeable cations reached over optimum range. Consequently, the ground cover management is the key factor to affect the chemical properties as well as soil physical properties extensively in plastic greenhouse. It is found that sod culture with natural weed after green manure application resulted in enhancement of utilization efficiency of nitrogen, phosphoric acid and potassium in soil in comparison with general sod culture.