• 제목/요약/키워드: physical and chemical factors

검색결과 421건 처리시간 0.032초

Poly(caprolactone) diol/Poly(ethylene glycol)을 기초로 한 폴리우레탄 마이크로겔의 합성 및 특성 (Preparation and Physical Properties of the Polyurethane Microgels Based on Poly(caprolactone) diol/Poly(ethylene glycol))

  • 임정수;김공수;이무재;이영근
    • 폴리머
    • /
    • 제25권1호
    • /
    • pp.41-48
    • /
    • 2001
  • 폴리카프로락톤디올(PCD) 및 폴리에틸렌글리콜(PEG), 디이소시아네이트 및 1,2,6-헥산트리올을 용액중합 방법으로 반응시켜 폴리우레탄(PU) 마이크로겔을 합성하였다. PCD/PEG의 몰비가 다른 마이크로겔의 임계 겔화농도의 성질과 생성에 영향을 주는 중요한 인자임을 알았다. 디이소시아네이트, PCD/PEG의 몰비 및 PEG의 분자량을 달리하여 제조한 PU 마이크로겔의 물리적 및 열적 성질을 실험하였다. PU 마이크로겔은 300nm 이하의 다분산성 구형의 작은 입자로 분포되어 있으며, 저점도 특성을 나타내었다.

  • PDF

물리적, 화학적, 생물적 요인에 의한 백합 (Lilium longiflorum cv. Georgia) 화분의 생장 및 Agro-Infiltration을 이용한 GUS 발현 (Impact of Physical, Chemical and Biological Factors on Lily (Lilium longiflorum cv. Georgia) Pollen Growth and GUS Expression Via Agro-infiltration)

  • 박희성
    • Journal of Plant Biotechnology
    • /
    • 제31권4호
    • /
    • pp.279-283
    • /
    • 2004
  • 백합 (Lilium longiflorum cv. Georgia) 화분의 생장과 agro-infiltration에 의한 일시발현에 대한 물리적, 화학적, 생물적 요인의 영향을 분석하였다 화분을 배지에 섞기 위한 물리적 과정이나 agro-infiltration을 위한 진공작업과정은 정상적 화분생장을 위하여 최소화되는 것이 바람직한 것으로 나타났다. 비교적 넓은 범위에서의 온도 (19 to 27$^{\circ}C$)나 pH(5.0 to 8.0)에서 화분의 생장이 유사하게 진행되었으며 화학적 요인으로서의 cefotaxime (300mg/L), acetosyringone (800 $\mu$M), syringealdehyde (800 $\mu$M) 등의 처리는 화분의 생장에 영향을 나타내지 않았다. 그러나 kanamycin의 경우 매우 심한 생장저해현상을 보였는데 25mg/L의 농도에서도 저해현상을 보이는 경우도 있었다. GUS유전자의 화분발현시 acetosyringone(200-400$\mu$M)의 처리에 의하여 그 효율이 약간 향상되는 것으로 나타났으나 syringealdehyde의 경우에는 효과가 없었다. 짧은 시간 내의 agro-infiltration과정과 이어서 18 hr의 화분 및 박테리아의 동시배양으로서도 acetosyringone의 첨가에 상관없이 화분에서의 GUS 일시 발현결과를 얻을 수 있었다.

Iopamidol과 Ioversol 제제 조영제의 온도변화에 따른 물리화학적 분석 (Physicochemical Analysis according to Temperature Changes of Iopamidol and Ioversol Formulation Contrast Agents)

  • 한범희
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권4호
    • /
    • pp.273-280
    • /
    • 2020
  • In this study, the P contrast agent of Iopamidol, which is a nonionic iodide contrast agent most commonly used as a vascular contrast agent in medical institutions, and the O contrast agent of Ioversol, were studied. The physicochemical changes according to the temperature change were compared and analyzed using the Bruker Avance 500MHz Nuclear Magnetic Resonance Spectrometer owned by the Korea Basic Science Institute (KBSI). There was no physical or chemical change in the O contrast medium of Ioversol formulation in temperature change. However, in the P contrast agent of Iopamidol, a doublet peak began to appear in the 1.1 ppm region of the sample at 60℃, and the doublet peak was clearly observed in the sample at 80℃. As a result of this study, 1H-NMR analysis revealed that the P contrast agent of the Iopamidol formulation was dissociated from chemical bonds as it rose to a high temperature of 60℃ or higher, resulting in the formation of foreign substances. It was evaluated that the O contrast agent of Ioversol formulation had physico-chemical stability than the P contrast agent of Iopamidol formulation. As shown in this study, it is necessary to analyze the physical and chemical changes of contrast agents according to various environmental factors.

Cell-Interactive Polymers for Tissue Engineering

  • Lee, Kuen Yong;Mooney, David J.
    • Fibers and Polymers
    • /
    • 제2권2호
    • /
    • pp.51-57
    • /
    • 2001
  • Tissue engineering is one exciting approach to treat patients who need a new organ or tissue. A critical element in this approach is the polymer scaffold, as it provides a space for new tissue formation and mimics many roles of natural extra-cellular matrices. In this review, we describe several design parameters of polymer matrices that can significantly affect cellular behavior, as well as various polymers which are frequently used to date or potentially useful in many tissue engineering applications. Interactions between cells and polymer scaffolds, including specific receptor-ligand interactions, physical and degradation feature of the scaffolds, and delivery of soluble factors, should be considered in the design and tailoring of appropriate polymer matrices to be used in tissue engineering applications, as these interactions control the function and structure of engineered tissues.

  • PDF

Accelerated Thermal Aging Test for Predicting Lifespan of Urethane-Based Elastomer Potting Compound

  • Min-Jun Gim;Jae-Hyeon Lee;Seok-Hu Bae;Jung-Hwan Yoon;Ju-Ho Yun
    • Elastomers and Composites
    • /
    • 제59권2호
    • /
    • pp.73-81
    • /
    • 2024
  • In the field of electronic components, the potting material, which is a part of the electronic circuit package, plays a significant role in protecting circuits from the external environment and reducing signal interference among electronic devices during operation. This significantly affects the reliability of the components. Therefore, the accurate prediction and assessment of the lifespan of a material are of paramount importance in the electronics industry. We conducted an accelerated thermal aging evaluation using the Arrhenius technique on elastic potting material developed in-house, focusing on its insulation, waterproofing, and contraction properties. Through a comprehensive analysis of these properties and their interrelations, we confirmed the primary factors influencing molding material failure, as increased hardness is related to aggregation, adhesion, and post-hardening or thermal-aging-induced contraction. Furthermore, when plotting failure times against temperature, we observed that the hardness, adhesive strength, and water absorption rate were the predominant factors up to 120 ℃. Beyond this temperature, the tensile properties were the primary contributing factors. In contrast, the dielectric constant and loss tangent, which are vital for reducing signal interference in electric devices, exhibited positive changes(decreases) with aging and could be excluded as failure factors. Our findings establish valuable correlations between physical properties and techniques for the accurate prediction of failure time, with broad implications for future product lifespans. This study is particularly advantageous for advancing elastic potting materials to satisfy the stringent requirements of reliable environments.

해양환경에 노출시킨 콘크리트의 내염성능 평가 (An Experimental Study on the Salt Resistance Properties with Concrete Materials under Marine Environment)

  • 고정재;김영웅;김동철;신도철;김상용;변대봉
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.790-793
    • /
    • 2004
  • The factors influencing concrete deterioration in marine environment can be generally divided into the physical and chemical action. The physical attack due to drying and wetting would increase the internal stress of concrete. The chemical attack resulting from the diffusion of ions$(i,e,\;Cl^-,SO_4^{2-},Mg^+)$ from seawater through the pores in concrete. The objective of this study is to evaluate corrosion characteristics of steel when using the various concrete materials under marine exposure environment. After 3 years of exposure, concrete specimen incorporating $40\%$ blast-furnace slag as replacement for type I cement with low w/c ratio of 0.42 and using the inhibitor shows excellent performance.

  • PDF

Separation of Dichlorinated Bydrocarbons by Pervaporntion Using ZSM-5 Zeolite Membrane

  • Lee, Young-Jin;Lee, Hye-Ryeon;Shim, Eun-Young;Ahn, Hyo-Sung;Lee, Yong-Taek
    • Korean Membrane Journal
    • /
    • 제7권1호
    • /
    • pp.51-57
    • /
    • 2005
  • Pervaporation with a membrane is one of the economic technologies for separation of liquid mixtures including organic/water mixtures. The ZSM-5 membrane was used fur pervaporation of dichloromethane, 1,2-dichloroethane and trans-1,2-dichloroethylene from their aqueous solutions since its physical property shows very hydrophobic. ZSM-5 crystals were hydrothermally grown and deposited on the inside of a porous sintered stainless steel tube by the secondary growth method. Fluxes of dichlorinated organic compounds were observed to be $50{\~}429\;g/m^2/h$ while separation factors were $15{\~}320$ depending on a mole fraction of a dichlorinated organic compound in a feed solution ranged from 0.0001 to 0.001 mole fraction and the operation temperature between $25^{\circ}C\;and\;35^{\circ}C$.

대뇌 기저핵의 기능과 파킨슨 질환 (The Function of Basal Ganglia & Parkinson's Disease)

  • 김진웅;강군용
    • 대한물리치료과학회지
    • /
    • 제9권2호
    • /
    • pp.159-170
    • /
    • 2002
  • Parkinson's disease(PD) is a progressive neurodegenerative disease that affects the functioning of the basal ganglia, a brain area that contributes to the control of movement. The disease is caused by the death of nerve cells in the brain that produce dopamine, a chemical messenger. The cells affected usually produce a neurotransmitter(a chemical that transmits nerver impulses) called dopamine, which acts with acetylcholine, another neurotransmitter, to fine-tune muscle control. In Parkinson's disease, the level of dopamine relative to acetylcholine is reduced, adversely affecting muscle control. When the supply of dopamine is depleted, the function of the basal ganglia is disrupted and its ability to control movement-deteriorates. The result is that PD patients experience moderate rigidity, difficulty in initiating movements and slowness in executing them, and a rhythmical tremor at rest. Although the cause of Parkinson's disease is not known, genetic factors may be involved. About 3 in 10 people with the disorder have an affected family member. About 1 in 100 people over the age of 60 in the US have Parkinson's disease. And Parkinson's disease is slightly more common in men. The course of the disease is variable, but drags may be the best effective in treating the symptoms and improving quality of life. But, The doctor may arrange physical therapy to help with physical mobility problems. It is important to continue to exercise and take care of your general health. Try to take a walk each day. Stretching exercises can help you maintain your strength and mobility. So, This papers will serve about the information of PD for clinical physical therapist. Finally, The aim of review is increasing approach method and technique for PD patients by the view of physical therapy.

  • PDF

An Update on Occupation and Prostate Cancer

  • Doolan, Glenn;Benke, Geza;Giles, Graham
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.501-516
    • /
    • 2014
  • Background: Our aim was to identify gaps and limitations in the current literature and to make recommendations for future research required to address these. Materials and Methods: We reviewed occupational exposures and related factors associated with the risk of prostate cancer between 2000 and 2012. These included chemical, ergonomic, physical or environmental, and psychosocial factors which have been reported by epidemiological studies across a range of industries. Results: The results are inconsistent from study to study and generally this is due to the reliance upon the retrospectivity of case-control studies and prevalence (ecological) studies. Exposure assessment bias is a recurring limitation of many of the studies in this review. Conclusions: We consider there is insufficient evidence to implicate prostate cancer risk for ergonomic, physical, environmental or psychosocial factors, but there is sufficient evidence to implicate toxic metals, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). More research is required to identify specific pesticides that may be associated with risk of prostate cancer.

The effective model of the human Acetyl-CoA Carboxylase inhibition by aromatic-structure inhibitors

  • Minh, Nguyen Truong Cong;Thanh, Bui Tho;Truong, Le Xuan;Suong, Nguyen Thi Bang;Thao, Le Thi Xuan
    • 전기전자학회논문지
    • /
    • 제21권3호
    • /
    • pp.309-319
    • /
    • 2017
  • The research investigates the inhibition of fatty acid biosynthesis of the human Acetyl-CoA Carboxylase enzyme by the aromatic-structure inhibitors (also known as ligands) containing variables of substituents, contributing an important role in the treatment of fatty-acid metabolic syndrome expressed by the group of cardiovascular risk factors increasing the incidence of coronary heart disease and type-2 diabetes. The effective interoperability between ligand and enzyme is characterized by a 50% concentration of enzyme inhibitor ($IC_{50}$) which was determined by experiment, and the factor of geometry structure of the ligands which are modeled by quantum mechanical methods using HyperChem 8.0.10 and Gaussian 09W softwares, combining with the calculation of quantum chemical and chemico-physical structural parameters using HyperChem 8.0.10 and Padel Descriptor 2.21 softwares. The result data are processed with the combination of classical statistical methods and modern bioinformatics methods using the statistical softwares of Department of Pharmaceutical Technology - Jadavpur University - India and R v3.3.1 software in order to accomplish a model of the quantitative structure - activity relationship between aromatic-structure ligands inhibiting fatty acid biosynthesis of the human Acetyl-CoA Carboxylase.