• Title/Summary/Keyword: phthalates

Search Result 111, Processing Time 0.038 seconds

Safty of Alternatives for Endocirne Disrupting Substances (내분비계장애물질 대체소재의 안전성)

  • Park, Chan Jin;Kim, Woong;Gye, Myung Chan
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.4
    • /
    • pp.361-374
    • /
    • 2015
  • Endocirne disruptors (EDs) can cause fertility decrease, developmental disorder, and even cancer in animals. Until 90's, EDs were used in various synthetic products including paints, coatings, detergents, plastics, and plasticizers. Currently, in several countries, the production, trade and use of EDs or EDs-suspected chemicals have been regulated while activity to screen the alternatives for EDs including bisphenol-A, phthalate and nonylphenol is active. Although various toxicity test method was developed and applied for screening of alternatives, however, the safety of alternatives has been not fully demonstrated. Some alternatives have high structural similarity with existing EDs, raising the possible risk of endocrine disruption by alternatives. In an effort to develop the safe alternatives, we reviewed the effects of EDs such as bisphenol-A, phthalates, nonylphenol and their substituents. In addition, in-silico analysis for endocrine disrupting activities of some alternatives was presented.

Phthalates Contamination in Indoor Dust in Elementary Schools in Seoul: A Pilot Study (서울시 초등학교 실내 먼지 중 프탈레이트 오염실태 조사)

  • Lee, Young-Sun;Choi, Inja
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.5
    • /
    • pp.548-554
    • /
    • 2020
  • Objectives: This study is to examine the polyvinyl chloride (PVC) materials in elementary school classrooms and libraries in Seoul, and to investigate phthalate contamination in indoor dust. Methods: PVC material was identified for building materials and furniture using portable x-ray fluorescence (XRF). Phthalates in dust samples (n=19) were extracted by ultrasonic extraction using cyclohexane and analyzed by GC-MS. Results: Diethyl phthalate (DEP), di-n-butyl phthalate (DBP), and Bis (2-ethylhexyl) phthalate (DEHP) were found in all collected dust samples (n=19), and diisonyl phthalate (DINP) was detected in all except for one sample (n=18). The concentration of DEHP (median: 2190 mg/kg) and DINP (2960 mg/kg) were higher than other compounds, suggesting that there are many products in the school that used these compounds. When comparing the phthalate concentration in the classroom (n=11) and library dust (n=8), the total concentration in the classroom (median: 10000 mg/kg) was higher than that in the library (8030 mg/kg). DEHP was the dominant compound in the library. The library is relatively more equipped with PVC furniture (n=83) and most floors are also identified as PVC material, suggesting that floors and furniture made of PVC materials are main sources of DEHP contamination. Conclusions: This study is a pilot survey for investigating phthalate contamination in elementary schools. As a result of the survey, phthalate contamination in elementary school was confirmed. However, further study requires risk assessment of children through analysis of phthalate metabolites in children based on sufficient number of samples and information about the site.

Determination of Phthalate Esters and Adipate in Water and Sediment Samples (수질 및 저질중의 프탈산 에스테르와 아디피산 분석)

  • Myung, Seung-Woon;Chang, Yoon-Jung;Min, Hye-Ki;Kim, Myung-Soo
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.616-623
    • /
    • 2000
  • The most common phthalate acid esters (8 compounds) and adipate were determined from water and sediment simultaneously. After liquid-liquid extraction with n-hexane for water and sonication extraction with dichloromethane for sediment, these were determined by the GC/MS with SIM mode. There were good linearities (above $R^2=0.993$) on the range of the 0.1-20 ng/ml (water) and 10-500 ng/g (sediment), and the detection limits of method were below 0.1 ng/ml and 10 ng/g for water samples and sediment samples, respectively. The method shows a good precision and accuracy for measurement of phthalates and adipate.

  • PDF

Analytical method of phthalates in children's products (어린이 용품 중 프탈레이트류 함유량 및 전이량 분석방법 고찰)

  • Kang, Young-Yeul;Shin, Sun-Kyoung;Park, Jin-Soo;Kim, Woo-Il;Chun, Jin-Won;Heo, Hwa-Jin;Koo, So-Hyun
    • Analytical Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.357-362
    • /
    • 2010
  • Phthalate plasticizer is not human carcinogens which has been classified as environmentally hazardous substance. Phthalates are absorbed into the body and cause tumors and ecological mutation to human potentially as reproductive toxic substances. For this reason, in some countries the use of phthalates in products for children has been banned. In this study, we proposed the analytical method of phthalate content and migration rate for children's product which was compared and reviewed to the analytical method of various countries, United States, Japan, European Union. The children's product on the proposed analytical method was analysed to consider of the correlation between the phthalate content and migration rate, but there was no correlation both of them.

Health Risks Assessment in Children for Phthalate Exposure Associated with Childcare Facilities and Indoor Playgrounds

  • Kim, Ho-Hyun;Yang, Ji-Yeon;Kim, Sun-Duk;Yang, Su-Hee;Lee, Chung-Soo;Shin, Dong-Chun;Lim, Young-Wook
    • Environmental Analysis Health and Toxicology
    • /
    • v.26
    • /
    • pp.8.1-8.9
    • /
    • 2011
  • Objectives: This study assessed the health risks for children exposed to phthalate through several pathways including house dust, surface wipes and hand wipes in child facilities and indoor playgrounds. Methods: The indoor samples were collected from various children's facilities (40 playrooms, 42 daycare centers, 44 kindergartens, and 42 indoor-playgrounds) in both summer (Jul-Sep, 2007) and winter (Jan-Feb, 2008). Hazard index (HI) was estimated for the non-carcinogens and the examined phthalates were diethylhexyl phthalate (DEHP), diethyl phthalate (DEP), dibutyl-n-butyl phthalate (DnBP), and butylbenzyl phthalate (BBzP). The present study examined these four kinds of samples, i.e., indoor dust, surface wipes of product and hand wipes. Results: Among the phthalates, the detection rates of DEHP were 98% in dust samples, 100% in surface wipe samples, and 95% in hand wipe samples. In this study, phthalate levels obtained from floor dust, product surface and children's hand wipe samples were similar to or slightly less compared to previous studies. The $50^{th}$ and $95^{th}$ percentile value of child-sensitive materials did not exceed 1 (HI) for all subjects in all facilities. Conclusions: For DEHP, DnBP and BBzP their detection rates through multi-routes were high and their risk based on health risk assessment was also observed to be acceptable. This study suggested that ingestion and dermal exposure could be the most important pathway of phthalates besides digestion through food.

A Review of the Literature Using the Korean National Environmental Health Survey (cycle 1-3) (국민환경보건기초조사 1~3기의 연구성과 검토)

  • Lee, Seungho;Kim, Jin Hee;Choi, Yoon-Hyeong;Kim, Sungkyoon;Lee, Kyung mu;Park, Jae Bum
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.3
    • /
    • pp.227-244
    • /
    • 2021
  • Objectives: The Korean National Environmental Health Survey provides representative biomonitoring data for environmental pollutants in South Korea. Over the last decade, there have been various studies published using this data. In this study, we aimed to provide information and implications by reviewing each study. Methods: We searched comprehensive electronic databases from PubMed, Google Scholar, and Naver Academic database using the key words 'Korean National Environmental Health Survey' and 'KoNEHS' through March 2021. A total of 57 studies were selected after reviewing the relevance of the data. Results: The most frequently studied pollutants were heavy metals (10), Cotinine (8), Bisphenol A (7), and Phthalates (6), in that order. In particular, Phthalates, Bisphenol A, and Parabens were often studied together (6). A decline in urinary cotinine and heavy metals in the body was shown over time among studies on exposure association. It was demonstrated that Phthalates and Bisphenol A were significantly related to obesity and diabetes from the studies of health impacts. Cross-section study design, spot urine, and insufficient health status information were mostly reported as limitations of the data. Conclusion: Since research has been focused on adults, further investigations of children and adolescents are required. In this regard, it is necessary to maintain the consistency of the data structure and provide integrated weights for all ages. In addition, it would allow the measurement of several environmental pollutants by considering subsample design. Lastly, integrated studies with multi-cycles and the health effects from co-exposure to multiple chemicals would be expected to provide important knowledge.

Determination of Phthalates Compounds in the Ambient Atmosphere (I) - Evaluation of a Measurement Method and its Application to a Field Study - (환경대기 중 프탈레이트 화합물의 농도 측정 (I) - 측정방법 평가와 현장 적용 -)

  • Hwang, Yoon-Jung;Park, Young-Hwa;Seo, Young-Kyo;Seo, Gwang-Kyo;Baek, Sung-Ok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.443-454
    • /
    • 2010
  • Phthalate compounds are widely used as plasticizers in polyvinyl chlororide (PVC) resins and other industrial consumer products, and some of them are known to be endocrine disruptors. In Korea, a number of studies have been carried out for the measurement of phthalates in consumer products and drinking water. However, no data are available for those compounds in the ambient air where the general public are routinely exposed. In this study, we evaluated sampling and analytical methods for the determination of phthalates in the ambient atmosphere. A wide range of phthalates compounds were included in the target analytes, which are dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DOP). Most of samples were collected using a high volume sampler with a PUF/XAD-2 column/quartz fiber filter and then analyzed by GC/MS. Some of samples were simultaneously collected on XAD-2 using a low-volume sampler, together with high-volume samples. The analytical method applied in this study showed good repeatability and linearity. Quantitative detection limits were estimated from 0.60 to 17.84 ng/$m^3$ in air, depending on individual compounds. The field measurements were carried out at 3 sites located in Sihwa- Banwall industrial areas and a suburban area from January 2007 to November 2007. From the field experiments, DEHP, DMP and DBP appeared to be the most abundant compounds in the ambient air. It was also found that DMP, DEP and DBP were mainly distributed in the vapor phase, while BBP, DEHP and DOP were predominantly associated with the particulate phase. The concentrations of DEHP and DMP in the industrial areas ranged from 45.7 to 1,012.7 ng/$m^3$ and from 7.7 to 375.1 ng/$m^3$, respectively. Overall, the high-volume sampling method was demonstrated to be superior to the low-volume method for the determination of phthalates in the ambient atmosphere.

DEHP, DEP and DBP Exposure Analysis using Urinary Metabolites of Gyonggi Province University Students

  • Lee, JangWoo;Kho, YoungLim;Kim, SungKyoon;Choi, Kyungho;Hwang, SeongHee;Jeong, Jeeyeon;Kim, Pangyi
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.5
    • /
    • pp.408-417
    • /
    • 2013
  • Objectives: Phthalates are used as plasticizers in polyvinyl chloride (PVC) plastics. As phthalate plasticizers are not chemically bound to the PVC, they can leach, migrate or evaporate into indoor air and atmosphere, foodstuffs, other materials, etc. Therefore, humans are exposed through ingestion, inhalation, and dermal exposure over their entire lifetime, including during intrauterine development. In particular, university students have a great number of opportunities to contact products including phthalates during campus life (food packaging, body care products, cosmetic, lotions, aftershave, perfume etc.). The purpose of this study was to examine levels of phthalate exposure as undergraduate students begin to use pharmaceuticals and personal care products including phthalates. Methods: Phthalate metabolites, mono-ethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), mono-2- ethylhexyl phthalate (MEHP), {(mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP}, and mono-(2-ethlyl-5-oxohexyl) phthalate (MEOHP} were examined. 80 urine samples collected from university students were analyzed using LC/MS/MS(API 4000, Applied Bioscience) with on-line enrichment and columnswitching techniques. This study was carried out at Y university located in Gyonggi Province from 2008 to 2011. Results: The detection limit of phthalate metabolites were 0.03 ng/mL for MEP, 0.11 ng/mL for MnBP, 0.08 ng/mL for MiBP, 0.93 ng/mL for MEHP, 0.19 ng/mL for MEOHP and 0.16ng/mL for MEHHP. MnBP showed the highest urinary levels (median: 31.6 ug/L, 24.8 ug/g creatinine (cr)). Concentrations were also high for MEHHP (median: 24.1 ug/L, 19.0 ug/g cr), followed by MEOHP (median: 22.8 ug/L, 17.9 ug/g cr). In individual cases, the maximum level reached up to 348 ug/L, and 291 ug/g cr, respectively. The urinary and creatinine adjusted levels of MEP were lower than those for DBP and DEHP metabolites, but were higher in 95th percentiles. As a result, the mean daily DEP intake value was 2.3 ${\mu}g/kg$ bw/day, 3.5 ${\mu}g/kg$ bw/day for DEHP and 4.9 ${\mu}g/kg$ bw/day for DBP. Conclusion: These students' phthalate exposure levels were below the international safe level set by the EU, but higher than the 2012 KFDA survey of the age group from 3 to 18.

Time Serial Concentration of Phthalate Esters and Bisphenol-A Contaminated from Spring Water Container's Cap and Seal Film

  • Park Chan Koo;Shin Jeong Sik;Kim Min Young;Kim Pan Gyi
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.6
    • /
    • pp.457-466
    • /
    • 2005
  • Industrial plasticizers such as phthalates can induce peroxisome proliferation. A growing concern among environmental and health groups has arisen because phthalates such as di-2-ethy1hexy1 phthalate (DEHP) and DBP may cause hormonal disorders, reproductive toxicity, hepatocellular tumors, genital disorders owing to a capacity to bind estrogen receptors, and a low-dose toxic action during certain periods of fetal development. Phthalate esters are used extensively as a plasticizer for plastic manufacture such as PVC bags and medical devices. This study investigated the effects of leached components from spring water container's cap and seal film. Phthalates, e.g. dimethy1 phthalate (DMP), diethy1 phthalate (DEP), di-n-buty1 phthalate (DBP), benzy1buty1 phthalate (BBP), di-(2-ethy1hexy1) phthalate (DEHP), and bisphenol A (BPA) were measured in the spring water. The bisphenol A was not detected or below the detection limit on the leaching from cap, sealing or spring water. DEHP were detected 90-116 ppb on the leaching from seal after 2 weeks, and 0.48-0.51 ppb from the spring water after I week. BBP were measured from seal within 1 week 25.4-66 ppb and below 0.12 ppb from spring water within 2 days. DMP were detected from seal within 2 weeks 51-68.5 ppb and 0.12 ppb after 2 weeks. DEP were measured from seal within 2 weeks 48.1-141 ppb and the concentrations were increased by the time from 0.10 to 0.31 ppb at spring water. DBP were detected from the seal within 2 weeks 92.3-5100 ppb and the concentration were decreased by the time from 0.24 to 0.10 ppb at spring water. These results indicate that some phthalate esters contaminated with spring water using the intact cap and seal film. It is concluded that the measured levels of phthalates leaching from these materials might in vivo only be slightly less than 1/10 of the LOAEL.