• Title/Summary/Keyword: photovoltaic equipment

검색결과 130건 처리시간 0.02초

임차공간 설치 태양광 발전시스템 경제성 평가에 관한 연구 (A Study on leasing space to install solar power systems Economic Evaluation)

  • 서미자;이재환;서태원;한명희;우제택
    • 한국전자통신학회논문지
    • /
    • 제10권12호
    • /
    • pp.1373-1380
    • /
    • 2015
  • 태양광발전소의 급속한 보급과 다양한 설계, 개발, 시공, 유지보수 관련 기술과 기업이 다양하게 공존하며 2010년 초반부터 구축된 최근의 태양광발전소는 발전단가의 하락에도 불구하고 주요 설비의 단가하락과 기술의 안정화로 발전소의 구축이 지속적으로 추진되고 있다. 최근에는 한정된 지상공간을 대체하는 지붕과 구조물 상단을 임차하여 시공하는 형태의 태양광발전소의 건립이 늘어나고 있다. 공장의 지붕, 창고나 물류센터의 지붕 등의 임차공간 설치 태양광발전소의 현황과 기술을 연구하고, 구축 시뮬레이션을 통하여 경제성을 분석하기 위한 검토와 연구를 진행 하였다.

EMTP를 이용한 직류배전계통 연계용 양방향 DC/DC 컨버터 모델링 (Modeling of Bi-directional DC/DC Converter for Connecting DC Distribution System using EMTP)

  • 한준;김두웅;오윤식;권기현;노철호;정택현;김철환
    • 전기학회논문지
    • /
    • 제63권5호
    • /
    • pp.615-621
    • /
    • 2014
  • With development of electrical power system, the DC distribution system has been considered as a promising technology to be used in the future smart distribution system. Among the various components comprising the DC distribution system, the bi-directional DC/DC converter is one of the most important equipment to interconnect between main power system and various renewable resources such as photovoltaic power generation, wind power generation, and electrical vehicles. In this paper, a bi-directional DC/DC converter based on three-phases interleaved method which is effective to reduce ripple of input current and output voltage is modeled using ElectroMagnetic Transient Program(EMTP), and the verification of modeled bi-directional DC/DC converter is conducted.

A Stable Black-Start Strategy for a Stand-Alone DC Micro-Grid

  • Cha, Jae-Hun;Han, Yoon-Tak;Park, Kyung-Won;Oh, Jin-Hong;Choi, Tae-Seong;Ko, Jae-Hun;MAHIRANE, Philemon;An, Jae-Yun;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.30-37
    • /
    • 2018
  • Unlike an AC system, a DC system does not cause problems with synchronization, stability, reactive power, system losses, and cost. However, more research is still required for the application of DC Systems. This paper proposes a stable black-start strategy for a stand-alone DC micro-grid, which consists of an energy storage system, photovoltaic generator, wind-turbine generator, diesel generator, and DC loads. The proposed method is very important for avoiding inrush current and transient overvoltage in the power system equipment during restoration after a blackout. PSCAD/EMTDC software was used to simulate, analyze, and verify the method, which was found to be stable and applicable for a stand-alone DC micro-grid.

계통연계형 태양광 인버터의 IEEE Std. 1547.1 에 따른 단독운전 검출 알고리즘의 시뮬레이션 (Simulation of Anti-Islanding Algorithms regarding IEEE Std. 1547.1 for Grid-Connected Photovoltaic Inverters)

  • 고문주;최익;최주엽;이기옥;유권종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.323-325
    • /
    • 2005
  • 본 논문에서는 계통연계형 태양광 발전 시스템에서의 단독운전 검출 시뮬레이션 과정을 설명한다. 전기적 시스템의 단독운전은 계통이 끊어진 상태에서 분산 전원이 계속 동작하여 지역 부하로 전력이 공급될 때 나타나는 현상이다. 이러한 현상은 계통 보수 작업자의 안전을 위협하며, 다른 전기적 장비에 악영향을 미칠 수 있다. 단독운전 검출 기능은 계통과 연계된 분산전원과 같은 기능을 가진 태양광 발전 시스템에 사용되는 인버터에서는 주요한 요구사항이다. IEEE Std. 1547.1 "IEEE Standard Conformance Test Procedures for Equipment Interconnecting Distribuyed Resources with Electric Power Systems" 는 단독운전 검출을 필요로 하는 시스템의 테스트 요구사항을 정하고 있다. 본 논문은 단독운전 검출 알고리즘과 IEEE Std. 1547.1의 내용에 준한 인버터 시뮬레이션 테스트의 예를 보여준다. PSIM을 이용한 시뮬레이션 과정과 결과 파형의 분석을 토대로 계통연계형 인버터의 시뮬레이션 절차와 방법에 대해 알아본다.

  • PDF

비진공 방법에 의한 CIGS/CZTS계 박막 태양전지 제조 (Fabrication of CIGS/CZTS Thin Films Solar Cells by Non-vacuum Process)

  • 유다영;이동윤
    • 한국재료학회지
    • /
    • 제28권12호
    • /
    • pp.748-757
    • /
    • 2018
  • Inorganic semiconductor compounds, e.g., CIGS and CZTS, are promising materials for thin film solar cells because of their high light absorption coefficient and stability. Research on thin film solar cells using this compound has made remarkable progress in the last two decades. Vacuum-based processes, e.g., co-evaporation and sputtering, are well established to obtain high-efficiency CIGS and/or CZTS thin film solar cells with over 20 % of power conversion. However, because the vacuum-based processes need high cost equipment, they pose technological barriers to producing low-cost and large area photovoltaic cells. Recently, non-vacuum based processes, for example the solution/nanoparticle precursor process, the electrodeposition method, or the polymer-capped precursors process, have been intensively studied to reduce capital expenditure. Lately, over 17 % of energy conversion efficiency has been reported by solution precursors methods in CIGS solar cells. This article reviews the status of non-vacuum techniques that are used to fabricate CIGS and CZTS thin films solar cells.

Load Modeling based on System Identification with Kalman Filtering of Electrical Energy Consumption of Residential Air-Conditioning

  • Patcharaprakiti, Nopporn;Tripak, Kasem;Saelao, Jeerawan
    • International journal of advanced smart convergence
    • /
    • 제4권1호
    • /
    • pp.45-53
    • /
    • 2015
  • This paper is proposed mathematical load modelling based on system identification approach of energy consumption of residential air conditioning. Due to air conditioning is one of the significant equipment which consumes high energy and cause the peak load of power system especially in the summer time. The demand response is one of the solutions to decrease the load consumption and cutting peak load to avoid the reservation of power supply from power plant. In order to operate this solution, mathematical modelling of air conditioning which explains the behaviour is essential tool. The four type of linear model is selected for explanation the behaviour of this system. In order to obtain model, the experimental setup are performed by collecting input and output data every minute of 9,385 BTU/h air-conditioning split type with $25^{\circ}C$ thermostat setting of one sample house. The input data are composed of solar radiation ($W/m^2$) and ambient temperature ($^{\circ}C$). The output data are power and energy consumption of air conditioning. Both data are divided into two groups follow as training data and validation data for getting the exact model. The model is also verified with the other similar type of air condition by feed solar radiation and ambient temperature input data and compare the output energy consumption data. The best model in term of accuracy and model order is output error model with 70.78% accuracy and $17^{th}$ order. The model order reduction technique is used to reduce order of model to seven order for less complexity, then Kalman filtering technique is applied for remove white Gaussian noise for improve accuracy of model to be 72.66%. The obtained model can be also used for electrical load forecasting and designs the optimal size of renewable energy such photovoltaic system for supply the air conditioning.

Improved Conductivities of SWCNT Transparent Conducting Films on PET by Spontaneous Reduction

  • 민형섭;김상식;이전국
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.43.2-43.2
    • /
    • 2011
  • Single-walled carbon nanotubes (SWCNT) are transparent in the visible and show conductivity comparable to copper, and are environmentally stable. SWCNT films have high flexibility, conductivity and transparency approaching that indium tin oxide (ITO), and can be prepared inexpensively without vacuum equipment. Transparent conducting Films (TCF) of SWCNTs has the potential to replace conventional transparent conducting oxides (TCO, e.g. ITO) in a wide variety of optoelectronic devices, energy conversion and photovoltaic industry. However, the sheet resistance of SWCNT films is still higher than ITO films. A decreased in the resistivity of SWCNT-TCFs would be beneficial for such an application. We fabricated SWCNT sheet with $KAuBr_4$ on PET substrate. Arc-discharge SWCNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWCNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with AuBr4-, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. $HNO_3$ treated SWCNT films with Au nano-particles have the lowest 61 ${\Omega}$/< sheet resistance in the 80% transmittance. Sheet resistance was decreased due to the increase of the hole concentration at the washed SWCNT surface by p-type doping of $AuBr_4{^-}$.

  • PDF

반고정식 PV 시스템의 운영 스케줄 도출 및 그에 따른 발전 효율 변화 고찰 (Optimal Operation Schedule of Semi-Fixed PV System and Its Effect on PV Power Generation Efficiency)

  • 곽인규;문선혜;허정호
    • 한국태양에너지학회 논문집
    • /
    • 제37권6호
    • /
    • pp.69-77
    • /
    • 2017
  • The amount of solar irradiation obtained by a photovoltaic (PV) solar panel is the major factor determining the power generated by a PV system, and the array tilt angle is critical for maximizing panel radiation acquisition. There are three types of PV systems based on the manner of setting the array tilt angle: fixed, semi-fixed, and tracking systems. A fixed system cannot respond to seasonal solar altitude angle changes, and therefore cannot absorb the maximum available solar radiation. The tracking system continually adjusts the tilt angle to absorb the maximum available radiation, but requires additional cost for equipment, installation, operation, and maintenance. The semi-fixed system is only adjusted periodically (usually seasonally) to obtain more energy than a fixed system at an overall cost that is less than a tracking system. To maximize semi-fixed system efficiency, determining the optimal tilt angle adjustment schedule are required. In this research, we conducted a simulation to derive an optimal operation schedule for a semi-fixed system in Seoul, Korea (latitude $37.5^{\circ}$). We implemented a solar radiation acquisition model and PV genereation model on MATLAB. The optimal operation schedule was derived by changing the number of tilt angle adjustments throughout a year using a Dynamic Algorithm. The results show that adjusting the tilt angle 4 times a year was the most appropriate. and then, generation amount of PV system increased 2.80% compared with the fixed system. This corresponds to 99% compared to daily adjustment model. This increase would be quite valid as the PV system installation area increased.

주택용 태양광발전시스템의 실시간 모니터링 기술 (Realtime Monitoring system of Residential Photovoltaic system)

  • 임중열;강병복;윤정필;박세준;윤필현;차인수
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.953-956
    • /
    • 2003
  • Digital environment that is represented to internet is displacing business way of industry and business achievement way with the fast speed being giving great change on life whole, improve existence business process utilizing internet and Web connection technology, information superhighway to tradition industrialist manufacture and e-transformation's propulsion that wish to maximize productivity and administration efficiency Is spread vigorously. In this paper, we wish to accomplish generation equipment's heighten stability and believability through remote monitoring and control of PV system. This paper describes the design of the monitoring system for sensing the monitoring data and indirect controlling of the PV system. Most of the conventional monitoring system depend on the special hardware and software. Basic design goal of monitoring system is to provide the convenience for the user and the portability for the system. In order for the system to fulfill its requirements, it was designed using Labview GUI facility based on the Windows 2000 environment of IBM PC compatible and Add-on card based on the TCP/IP protocol. Advantage of the monitoring system are a personnel expenses curtailment effect, free of the place restriction and unmanned system of the generation plants, etc..

  • PDF

염료감응형 태양전지의 광전극 적용을 위한 $TiO_2$ nanoparticle 특성 분석 (Study on $TiO_2$ nanoparticle for Photoelectrode in Dye-sensitized Solar Cell)

  • 조슬기;이경주;송상우;박재호;문병무
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • Dye-sensitized solar cells (DSSC) have recently been developed as a cost-effective photovoltaic system due to their low-cost materials and facile processing. The production of DSSC involves chemical and thermal processes but no vacuum is involved. Therefore, DSSC can be fabricated without using expensive equipment. The use of dyes and nanocrystalline $TiO_2$ is one of the most promising approaches to realize both high performance and low cost. The efficiency of the DSSC changes consequently in the particle size, morphology, crystallization and surface state of the $TiO_2$. Nanocrystalline $TiO_2$ materials have been widely used as a photo catalyst and an electron collector in DSSC. Front electrode in DSSC are required to have an extremely high porosity and surface area such that the dyes can be sufficiently adsorbed and be electronically interconnected, resulting in the efficient generation of photocurrent within cells. In this study, DSSC were fabricated by an screen printing for the $TiO_2$ thin film. $TiO_2$ nanoparticles characterized by X-ray diffractometer (XRD) and scanning electron microscope (SEM) and scanning auger microscopy (SAM) and zeta potential and electrochemical impedance spectroscopy(EIS).In addition, DSSC module was modeled and simulated using the SILVACO TCAD software program. Improve the efficiency of DSSC, the effect of $TiO_2$ thin film thickness and $TiO_2$ nanoparticle size was investigated by SILVACO TCAD software program.

  • PDF