• 제목/요약/키워드: photovoltaic characteristics

검색결과 732건 처리시간 0.028초

태양광 발전 시스템의 무순단 MPPT 운전 모드 절체 기법 (Seamless Transfer Method of MPPT for Two-stage Photovoltaic PCS)

  • 박종화;조종민;안현성;차한주
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.233-238
    • /
    • 2018
  • This paper proposes a seamless MPPT operation mode transfer method of photovoltaic system. The photovoltaic system consists of a DC-DC boost converter, a DC-Link, and a 3-level neutral point clamp (NPC) type inverter. The PV voltage fluctuates due to the output characteristics of the solar pane1 depending on the irradiation amount and the temperature. The photovoltaic system requires seamless MPPT mode transfer method that the discontinuity does not occur in order to supply the stable power to system without affecting the fluctuation of the PV voltage. MPPT operation is divided into two modes by the voltage reference. Under the condition that the PV voltage is below 650V, the DC-DC boost converter performs MPPT through duty control based on perturb & observe (P&O) method, and the inverter conducts DC-link voltage and grid current controls in synchronous reference frame. On the other hand, when the PV voltage exceeds above 650V, inverter performs MPPT in accordance with the variation of DC-link voltage control while the converter stops operating. Two MPPT operation modes is smoothly transferred through the proposed method that DC-link voltage or grid current commands are appropriately adjusted from the certain criteria. The feasibility of the MPPT operation mode transfer method is verified using a 10kW solar photovoltaic system, experimental results have good performances that the fluctuation of PV current is reduced to 100%.

태양광 시뮬레이터와 PCS를 이용한 배터리 방전시스템 구성 (Battery Discharge System Configuration using Photovoltaic Simulator and PCS)

  • 정다움;박성민;박성미;박성준;문승필
    • 한국산업융합학회 논문집
    • /
    • 제23권3호
    • /
    • pp.491-498
    • /
    • 2020
  • Recently, In the production line of batteries, charge and discharge tests are essential to verify battery characteristics. In this case, the battery charging uses a unidirectional AC/DC converter capable of output voltage and current control, and the discharge uses a resistive load. Since this method consumes energy during discharge, it must be replaced with a bi-directional AC/DC converter system capable of charging and discharging. Although it is difficult to replace the connected inverter part of the bi-directional AC/DC converter system due to the high cost, the spread of the solar-connected inverter rapidly increases as the current solar supply business is activated, and thereby the solar-connected type Inverter prices are plunging. If it can be used as a power converter for battery discharge without program modification of the solar-powered inverter, it will have competition. In this paper, propose a new battery discharge system using a combination of a photovoltaic DC/DC simulator and photovoltaic PCS using a battery to be used as a power converter for battery discharge without program modification of a low-cost photovoltaic inverter. In addition, propose an optimal solar characteristic curve for the stable operation of PCS. The validity of the proposed system was verified using a 500[W] class solar DC/DC simulator and a solar PCS prototype.

다양한 환경조건에서 태양전지모듈의 PID회복특성 (PID Recovery Characteristics of Photovoltaic Modules in Various Environmental Conditions)

  • 이은석;정태희;고석환;주영철;장효식;강기환
    • 한국태양에너지학회 논문집
    • /
    • 제35권5호
    • /
    • pp.57-65
    • /
    • 2015
  • The Potential Induced Degradation(PID) in PV module mainly affected by various performance conditions such as a potential difference between solar cell and frame, ambient temperature and relative humidity. The positive charges as sodium ions in front glass reach solar cell in module by a potential difference and are accumulated in the solar cell. The ions accelerate the recombination of generation electrons within solar cell under illumination, which reduces the entire output of module. Recently, it was generally known that PID generation is suppressed by controlling the thickness of SiNx AR coating layer on solar cell or using Sodium-free glass and high resistivity encapsulant. However, recovery effects for module with PID are required, because those methods permanently prevent generating PID of module. PID recovery method that voltage reversely applies between solar cell and frame contract to PID generation begins to receive attention. In this paper, PID recovery tests by using voltage under various outdoor conditions as humidity, temperature, voltage are conducted to effectively mitigate PID in module. We confirm that this recovery method perfectly eliminates PID of solar cell according to repeative PID generation and recovery as well as the applied voltage of three factors mainly affect PID recovery.

전도성 페이스트를 이용한 무연 리본계 PV 모듈의 출력 특성 분석 (Analysis of Output Characteristics of Lead-free Ribbon based PV Module Using Conductive Paste)

  • 윤희상;송형준;고석환;주영철;장효식;강기환
    • 한국태양에너지학회 논문집
    • /
    • 제38권1호
    • /
    • pp.45-55
    • /
    • 2018
  • Environmentally benign lead-free solder coated ribbon (e. g. SnCu, SnZn, SnBi${\cdots}$) has been intensively studied to interconnect cells without lead mixed ribbon (e. g. SnPb) in the crystalline silicon(c-Si) photovoltaic modules. However, high melting point (> $200^{\circ}C$) of non-lead based solder provokes increased thermo-mechanical stress during its soldering process, which causes early degradation of PV module with it. Hence, we proposed low-temperature conductive paste (CP) based tabbing method for lead-free ribbon. Modules, interconnected by the lead-free solder (SnCu) employing CP approach, exhibits similar output without increased resistivity losses at initial condition, in comparison with traditional high temperature soldering method. Moreover, 400 cycles (2,000 hour) of thermal cycle test reveals that the module integrated by CP approach withstands thermo-mechanical stress. Furthermore, this approach guarantees strong mechanical adhesion (peel strength of ~ 2 N) between cell and lead-free ribbons. Therefore, the CP based tabbing process for lead free ribbons enables to interconnect cells in c-Si PV module, without deteriorating its performance.

태양광 리본용 Sn-Pb-Ag 솔더의 특성에 미치는 Ag의 영향 (Effects of Ag on the Characteristics of Sn-Pb-Ag Solder for Photovoltaic Ribbon)

  • 손연수;조태식
    • 한국전기전자재료학회논문지
    • /
    • 제28권5호
    • /
    • pp.332-337
    • /
    • 2015
  • We have studied the effects of Ag on the characteristics of $Sn_{60}Pb_{40}Ag_x$ (wt%) solder for photovoltaic ribbon. Ag atoms in the solder formed an alloy phase of $Ag_3Sn$ after reacting with some part of Sn atoms, while they did not react with Pb atoms, but decreased the mean size of Pb solid phase. The enhancement of peel strength between solar cell and ribbon is an important part in the developments of long-lifespan solar module. The peel strength of the solder ribbon of $Sn_{60}Pb_{40}$ (wt%) was $169N/mm^2$, and it was largely enhanced by adding a small amount of Ag atoms. The maximum peel strength was $295N/mm^2$ in the solder ribbon of $Sn_{60}Pb_{40}Ag_2$ (wt%). This result is caused by the high binding energy of 162.9 kJ/mol between Ag atoms in the solder and Ag atoms in Ag sheet.

백시트 종류에 따른 태양전지 모듈의 방열 특성 평가 (Evaluation of Heat Transfer Characteristics of PV Module with Different Backsheet)

  • 배수현;오원욱;강윤묵;이해석;김동환
    • Current Photovoltaic Research
    • /
    • 제6권2호
    • /
    • pp.39-42
    • /
    • 2018
  • When the PV module is illuminated in a high temperature region, solar cells are also exposed to the high temperature external environment. The operating temperature of the solar cell inside the module is increased, which causes the power drops. Various efforts have been made to reduce the operating temperature and compensate the power of solar cells according to the outdoor temperature such as installing of a cooling system. Researches have been also reported to lower the operating temperature of solar cells by improving the heat dissipation properties of the backsheet. In this study, we conducted a test to measure the internal temperature of each module components and the external temperature when the light was irradiated according to the surrounding temperature. Backsheets with different thermal conductivities were compared in the test. Finally, in order to explain the temperature difference between the solar cell and the outside of the module, we proposed an evaluation method of the heat transfer characteristics of photovoltaic modules with different backsheet.

결정질 실리콘 태양전지 모듈의 종류에 따른 동작 조건별 특성 비교에 관한 연구 (Output characteristics of different type of si pv modules based on working condition)

  • 박지홍;강기환;안형근;유권종;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.252-256
    • /
    • 2008
  • Photovoltaic (PV) modules output changes noticeable with variations in temperature and irradiance. In general it is has been shown that a $1^{\circ}C$ increase in temperature results in a 0.5% drop in output. In this paper, seven PV module types are analyzed for variation in temperature and irradiance, and the resulting output characteristics examined. The 7 modules types utilized are as follows; 3 poly crystalline modules, 2 single crystalline modules, 1 back contact single crystalline module and 1 HIT module. 3 groups of experiments are then conducted on the modules; tests with varying irradiance values, tests with module temperature varying under $25^{\circ}C$ and tests with module temperature varying over $25^{\circ}C$. The experiments results show that as temperature rises the follow is observed; Pmax decreases by 0.6%, Voc decreases by about 0.4%, and Isc increasing by between 0.03%${\sim}$0.08%. In addition, an irradiance decrease of 100 w/m2 translates into a 10% drop in Pmax.

  • PDF

수직형 태양광발전모듈의 계절별 일사획득 및 온도변화에 따른 출력특성 변화에 관한 연구 (Study on variation of electrical characteristics of vertical PV module according to the change of irradiance and temperature)

  • 박경은;강기환;김현일;유권종;김준태
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.57-62
    • /
    • 2008
  • Building Integrated PV(BIPV) is one of the best fascinating PV application technologies. To apply PV module in building, various factors should be reflected such as installation position, shading, temperature, and so on. Especially the installation condition should be considered, for the generation performance of PV module is changed or the generation loss is appeared according to installation position, method, and etc. This study investigates variation of electrical characteristics of a PV module according to the change of irradiance and temperature. From this experimental study, we confirmed that the irradiance, the temperature variation and the generation performance of a PV module were appeared differently according seasonal variation. Actually the PV module installed in building facade showed high-generation performance in winter.

  • PDF

모듈형 태양광 발전을 위한 개선된 동적응답 특성을 지닌 고효율 DC-DC 컨버터 (High-Efficiency DC-DC Converter with Improved Dynamic Response Characteristics for Modular Photovoltaic Power Conversion)

  • 최제연;최우영
    • 전력전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.54-62
    • /
    • 2013
  • This paper proposes a high-efficiency DC-DC converter with improved dynamic response characteristics for modular photovoltaic power conversion. High power efficiency is achieved by reducing switching power losses of the DC-DC converter. The voltage stress of power switches is reduced at primary side. Zero-current switching of output diodes is achieved at secondary side. A modified proportional and integral controller is suggested to improve the dynamic responses of the DC-DC converter. The performance of the proposed converter is verified based on a 200 [W] modular power conversion system including the grid-tied DC-AC inverter. The proposed DC-DC converter achieves the efficiency of 97.9 % at 60 [V] input voltage for a 200 [W] output power. The overall system including DC-DC converter and DC-AC inverter achieves the efficiency of 93.0 % when 200 [W] power is supplied into the grid.

ZnPc를 이용한 유기태양전지의 주파수 응답 특성 (Frequency response of Photovoltaic Cell using ZnPc)

  • 안준호;이호식;박재준;이원재;장경욱;서대식;김태완;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.285-286
    • /
    • 2005
  • Organic photovoltaic properties were studied in ZnPc/$C_{60}$ heterojunction structure by varying the organic layer thicknesses and exiton blocking layer(EBL). Current density-voltage characteristics of organic photovoltaic cells were measured using Keithley 236 source-measure unit, a 500W xenon lamp (ORIEL 66021) for a light source and Agilent 4294A impedance analyzer in the range of 40 Hz $\sim$ 1 MHz. From the analyses of current-voltage characteristics such as short-circuit current density, open-circuit voltage and power conversion efficiency, optimum thickness of the organic layer were obtained and frequency response such as electrical conductance.

  • PDF