• Title/Summary/Keyword: photovoltaic characteristics

Search Result 732, Processing Time 0.031 seconds

Study on relation of transmittance characteristics and efficiency for Photovoltaic Module (태양광 모듈의 투과특성과 효율과의 연관성에 대한 연구)

  • Jung, In-Sung;Jung, Eun-Suk;Kim, Jung-Gun;Lee, Bum-Su;Kim, Chong-Yeal;Kim, Chul-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.453-453
    • /
    • 2009
  • Wafer 태양전지와 Back sheet 및 기타 소재를 사용하는 기존의 Photovoltaic Module은 투과성이 존재하지 않으므로 본 논문에서는 태양전지 모듈의 투과특성을 발휘할 수 있는 Glass to Glass (GtG) Type의 Photovoltaic module에 대해 그 투과 특성 및 효율과의 관계를 분석하였다. 먼저 Module용 소재 중 Poly vinyl butyral (PVB) 및 Ethylene vinyl acetate(EVA) sheet의 Transmittance와 Haze 특성을 분석하였다. GtG 타입의 Photovoltaic Module은 약 90%정도의 투과율을 갖는 강화유리 및 Haze가 없는 PVB sheet를 사용하여 1m $\times$ 1m 크기로 제작하였다. GtG 타입으로 제조한 모둘 중 Cell 16EA를 사용한 모듈은 Cell 25EA를 사용한 모듈에 비해서 36% 투과율이 증가하였으나 효율 면에서 38%감소하였다. 최종적으로 GtG 타입 Module의 효율과 투과율에 관련된 식을 각각 정립하였다.

  • PDF

Photovoltaic Properties of Organic Photovoltaic cell (유기물을 이용한 Photovoltaic cell의 광기전력 특성)

  • Kim, S.K.;Lee, H.D.;Chung, D.H.;Oh, H.S.;Hong, J.I.;Park, J.W.;Kim, T.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.123-126
    • /
    • 2003
  • Recently, there is a growing concern on the photovoltaic effects using organic materials. This is a phenomena which converts the solar energy into the electrical one. We have fabricated a device structure of $ITO/PEDOT:PSS/CuPc/C_{60}/BCP/AI$. The PEDOT:PSS layer is made by spin coating, and the other organic layers are made by thermal vapor deposition. By measuring the current-voltage characteristics with an illumination of light, we have obtained value of Voc=0.38V, Jsc=$0.5mA/cm^{2}$. And a fill factor and efficiency are about 0.314 and 0.083%, respectively. A 500W xenon lamp(ORIEL) is used for a light source, and the light intensity illuminated into the device was about 10mW.

  • PDF

The mechanical strength characteristic on front-load of PV module (PV모듈의 전면 하중 기계강도 특성)

  • Choi, Ju-Ho;Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-jong;Kim, Il-Soo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.164-168
    • /
    • 2011
  • This study of PV modules in the external environment, learn about the mechanical strength characteristics, the module will investigate the aluminum frame. Positive support in the module by wind loads if uniformly distributed load acting on the front glass of the module size and elongation(${\omega}$), and accordingly, depending on the bend is sealed inside the solar cell, micro-cracks that will occur. At this point the most damage-prone parts in a module, this module is part of the center of a strong wind load is applied by the destruction of the environment does not occur in the module frame to secure the reliability and to evaluate changes in the structure.

  • PDF

Synthesis of Nanoporous $TiO_2$ Materials Using Sol-gel Combustion Method and Its Photovoltaic Characteristics (나노 다공질 구조의 이산화티타늄 박막 제작과 광전변환 특성 고찰)

  • Heo, Jong-Hyun;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.322-326
    • /
    • 2009
  • In this work, nanoporous $TiO_2$ powder was fabricated using Ketjen black, and applied in photovoltaic device based on the Dye-sensitized Solar Cells (DSCs). $TiO_2$ powder was fabricated using Ti-isopropoxide and 2-propanol by sol-gel combustion method. For added $0{\sim}2g$ variable of Ketjen black, characteristic of porosity, size of particle and crystallite of obtained $TiO_2$ nano powder was investigated. The photovoltaic efficiency of the prepared DSCs was measured using $TiO_2$ film which prepared on each different heat treatment temperature($100^{\circ}C{\sim}600^{\circ}C$) with paste of $TiO_2$ powder. The porosity and size in particle of $TiO_2$ powder made with Ketjen black Ig was influenced significantly effect to DSCs characteristic. Heat treatment at $500^{\circ}C$ makes the better photovoltaic efficiency which around 6.11%($J_{sc}=13.35mA/cm^2$, $V_{oc}=0.73V$, ff=0.63). The sol-gel combustion method was useful to DSCs fabrication.

Photovoltaic Hybrid Systems Reliability and Availability

  • Zahran, Mohamed B.A.
    • Journal of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.145-150
    • /
    • 2003
  • Reliability, availability, and cost have been the major concerns for photovoltaic hybrid systems since their beginning as primary sources for much critical applications like communication units and repeaters. This paper descnbes the performance of two hybrid systems, photovoltaic-battery, wind-turbine coupled with the public-grid (PVBWG) hybrid system and photovoltaic-battery, wind-turbine coupled With the diesel generator (PVBWD) hybrid system The systems are sized to power a typical 300W/48V de telecommunication load continuously throughout the year Such hybrid systems consist of subsystems, which in turn consist of components Failure of anyone of these components may cause failure of the entire system. The reliability and availability basics, and estimation procedure for the two proposals are introduced also in this paper. The PVBWG and PVBWD system configurations are shown with the relevant mean-time-between-faIlure (MTBF) and failure rate (${\lambda}$) of each component. The characteristics equations of the two systems are deduced as a function of operating hours and the percentage of sun and wind availabilities per day. The system probability failure as well as the reliability is estimated based on the fault tree analysis technique. The results show that, by using standard or normal components MTBF, the PVBWG is more reliable and the time of periodic maintenance period is more than one year especially in the rich sites of both sun and wind, but PVBWD competes else Also, in the first five years from the system installation, the system is quit reliable and may not require any maintenance. The results show also, as the sun and wind are available, as the system reliable and available.

Electrical Properties of Organic Photovoltaic Cell using CuPc/$C_{60}$ double layer (CuPc/$C_{60}$ 이중층을 이용한 유기 광기전 소자의 전기적 특성)

  • Lee, Ho-Shik;Cheon, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.505-506
    • /
    • 2007
  • Organic photovoltaic effects were studied in a device structure of ITO/CuPc/Al and ITO/CuPc/$C_{60}$/BCP/Al. A thickness of CuPc layer was varied from 10 nm to 50 nm, we have obtained that the optimum CuPc layer thickness is around 40 nm from the analysis of the current density-voltage characteristics in CuPc single layer photovoltaic cell. From the thickness-dependent photovoltaic effects in CuPc/$C_{60}$ heterojunction devices, higher power conversion efficiency was obtained in ITO/20nm CuPc/40nm $C_{60}$/Al, which has a thickness ratio (CuPc/$C_{60}$) of 1:2 rather than 1:1 or 1:3. Light intensity on the device was measured by calibrated Si-photodiode and radiometer/photometer of International Light Inc(IL 14004).

  • PDF

Characteristics Analysis of Proto-type Microconverter for Power Output Compensation of Photovoltaic Modules (태양광 모듈 출력 보상을 위한 마이크로컨버터 시제품 동작 특성 분석)

  • Jihyun, Kim;Ju-Hee, Kim;Jeongjun, Lee;Jongsung, Park;Changheon, Kim
    • Current Photovoltaic Research
    • /
    • v.10 no.4
    • /
    • pp.133-137
    • /
    • 2022
  • The economic feasibility of a photovoltaic (PV) system is greatly influenced by the initial investment cost for system installation. Also, electricity generation by PV system is highly important. The profits competitiveness of PV system will be maximized through intelligent operation and maintenance (O&M). Here, we developed a microconverter which can maximize electricity generation from PV modules by tracking the maximum power point of PV modules, and help efficient O&M. Also, the microconverter mitigates current mismatch caused by shading, hence maximize power generation. The microconverters were installed PV modules and demonstrated through the field tests. Power outputs such as voltage, string current were measured with variuos weather environments and partial shadings. We found that PV modules with the microconvertors shows 12.05% higher power generation compared to the reference PV modules.

Analysis of Power Characteristics of High-Power Shingled Photovoltaic Module with Color Application (고출력 슁글드 태양광 모듈 컬러 적용에 따른 출력 특성 분석)

  • Kim, Juhwi;Lee, Jaehyeong
    • Current Photovoltaic Research
    • /
    • v.10 no.3
    • /
    • pp.73-76
    • /
    • 2022
  • BIPV (Building Integrated Photovoltaic) supplemented the minimum area problem required when installing existing solar modules. However, in order to apply it to buildings, research was needed to increase the aesthetics of solar modules and use them as a design. Accordingly, modules with color applied to the entire surface of the photovoltaic module were being developed, but there was a disadvantage of low power. Therefore, by dividing and bonding the cell strips, it was possible to improve the output power by applying a shingled technology in which other divided cells overlap in a busbar region where light couldn't be received. Shingled technology was advantageous for color modules because the front busbar part that degrades aesthetics was removed. In this research, four color shingled solar modules (Green, Yellow, Blue, Gray) were manufactured and power degradation was analyzed by measuring transmittance and reflectance. Gray color had 80.83% transmittance, which was 31.31% higher than Yellow, resulting in a power difference of 4.45 W.

Evaluation of Electricity Generation According to Installation Type of Photovoltaic System in Residential Buildings (주거용 건물 태양광발전시스템의 설치유형에 따른 발전성능 평가)

  • Kim, Deok-Sung;Kim, Beob-Jeon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.35-45
    • /
    • 2017
  • The types of installation of the photovoltaic system applied to domestic residential buildings are classified as follows: Mounted modules with air circulation, semi-integrated modules with air duct behind, integrated modules with fully insulated back. In order to study generation characteristics of PV system, we verified the validity of interpretation program based on long-term measurement data of demonstration house installed in BAPV form and also analyzed the generation characteristics and performance of each installation type. The results are as follows. First, the RMSE of amount of generation and simulation according to annual daily insolation of demonstration system located in Daejeon was 0.98kWh and the range of relative error of monthly power generation was -5.8 to 3.1. Second, the average annual PR of mounted modules was 82%, semi-integrated modules 76.1% and integrated modules 71.9%. This differences were attributed to temperature loss. Third, the range of operating temperature of annual hourly photovoltaic modules was -6.5 to $61.0^{\circ}C$ for mounted modules, $-6.0{\sim}73.9^{\circ}C$ for semi-integrated modules and -5.5 to $88.9^{\circ}C$ for integrated modules. The temperature loss of each installation type was -14.0 to 16.1%, -13.8 to 21.9%, and -13.6 to 28.5%, respectively.

Evaluation on the Photovoltaic Module Arrangement Planning Considering Shading Conditions in Apartment Buildings (음영조건을 고려한 공동주택 옥상 태양광모듈의 배치계획 평가 연구)

  • Lee, Keo-Re;Lee, Yoon-Sun;Lim, Jae-Han
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.5
    • /
    • pp.169-179
    • /
    • 2019
  • During the initial design stage of apartment complex, the photovoltaic(PV) system has been considered as an alternative of renewable energy system and planned to install at the rooftop floor level in general. The electric power generation characteristics can be influenced by the block layout, building orientation and roof top structure because of azimuth angle, tilt angle, and partial shading. This study aims to investigate power generation characteristics of photovoltaic system in apartment buildings by considering the partial shading conditions due to the block layout, building orientation and roof-top structures. For the photovoltaic module arrangement planning in rooftop floor level, shading areas were firstly analyzed due to the adjacent building structure. And the annual and seasonal power generation of PV system were analyzed through the PVsyst simulation results. The results show that shading period at the roof top surface can be increased due to the parapet and water tank. Initial design power capacity can be decreased by considering the daily insolation period and distance between PV modules through the shading simulation. As the number of PV modules decreases, the annual power generation can be decreased. However annual power generation per unit area of PV modules can be increased and performance ratio can be increased above 80%. Also the power generation of PV system can be critically affected by building orientation and the performance ratio can be drastically decreased in east-oriented buildings due to the shading problems caused by adjacent structures at roof top level such as parapet and water tank.