• Title/Summary/Keyword: photovoltaic

Search Result 3,620, Processing Time 0.028 seconds

A Study on Operating Characteristics and Design Factors of Floating Photovoltaic Generating Facilities (수상태양광 발전시스템의 운영특성 및 설계요소에 관한 연구)

  • Kim, Hyun-Han;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1532-1539
    • /
    • 2017
  • The floating photovoltaic system is a new concept in the renewable energy technology. That is similar to land based photovoltaic technology except floating system. So the system needs buoyant objects, mooring, ect, besides modules and supports, and that is able to withstand in water level changes and wind strength. Therefore the floating photovoltaic system is much different from land photovoltaic system. K-water (Korea Water Resources Corporation) has been operating two floating photovoltaic system that's capacity is 100 kW and 500 kW respectively since in summer 2011 for commercial generation, and have construction project for 2,000 kW in Boryeong multipurpose Dam and other areas. Furthermore K-water was developing a tracking-type floating photovoltaic system at Daecheong multipurpose Dam and developed and installed an ocean floating photovoltaic demonstration plant at Sihwa Lake in October 2013 for R&D. In this paper, we introduce that structure of floating photovoltaic system include buoyant structure, mooring system and auxiliary device. Especially the rope which is in part of mooring should be always maintain tension under any water level. Also we explain about structure design concept to wind load in an every loading condition and a kind of structure materials and PV structure types used in water environment. Especially ocean floating PV system is affected by tidal current and typhoon. So there are considering the elements in design. Finally we compare with floating and land photovoltaic on power amount. As a result of that we verified the floating photovoltaic system is more about 6.6~14.2 % efficiency than a general land photovoltaic system.

Improving the effectiveness of a photovoltaic system by cooling on the surface of photovoltaic cells (태양광발전 시스템 효율향상을 위한 셀 표면 냉각에 관한 연구)

  • Jin, Joo-Seok;Yu, Sang-Phil;Kim, Yi-Hyun;Jeong, Seong-Dae;Seo, Yong-Seog;Jeong, Nam-Jo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.183-186
    • /
    • 2009
  • The crystalline silicon solar cell was one of the first to be developed and it is still the most widely used type. The photovoltaic cells will exhibit long-term degradation if the temperature exceed a certain limit. The purpose of this study is to investigate the possible of improving the performance of a photovoltaic cooling system. According to the results of the experiment, the thermal degradation of 44.63degrees was observed by cooling on the surface of photovoltaic cells. It is a decrease of 22.215percent of generating power. It is shown that photovoltaic cooling system is effected on improving the effectiveness of a photovoltaic out of power.

  • PDF

Characteristic Evaluation Tools of EVA Sheet for Photovoltaic Module Fabrication (태양전지모듈용 EVA Sheet의 특성 평가 방법)

  • Kang, Kyung-Chan;Lee, Jin-Seob;Kang, Gi-Hwan;Huh, Chang-Su;Yu, Gwon-Jong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.92-97
    • /
    • 2008
  • To survive in outdoor environments, photovoltaic modules rely on packaging materials to provide requisite durability. We analyzed the properties of encapsulant materials that are important for photovoltaic module packaging. The properties of Ethylene Vinyl Acetate(EVA) sheet in photovoltaic encapsulant materials have to meet conditions that are high optical transmittance, good adhesion and high cross-linking rate. The objective of this paper is to understand the property evaluation methods of EVA sheet. Through this research, we could confirm that properties of EVA sheet have an effect on durability and operating efficiency of photovoltaic module.

  • PDF

Study on Analysis of Suitable Site for Development of Floating Photovoltaic System (수상태양광 발전시스템 개발을 위한 적지조사에 관한 연구)

  • Lee, Sung-Hun;Lee, Nam-Hyung;Choi, Hyeong-Cheol;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.30-38
    • /
    • 2012
  • Recently, interests in renewable energy have gradually increased. Photovoltaic system of various renewable energy is the most interest in power sources. Nowadays, the market of photovoltaic system is expected to be expanded due to the introduction of RPS(Renewable Portfolio Standard). Floating photovoltaic system is a new power system using the water surface above the dam and reservoir water. Floating photovoltaic system is different from the traditional approach to the development of solar power system causing problems such as environmental degradation. This paper investigates the analysis methods of suitable site for the development of floating photovoltaic system. The A,B,C as the optimal candidates were selected in hap cheon dam. The C is the best suitable site in A,B,C considering the expected power generation. Applied methods have effectively done to develop floated photovoltaic system.

A Study on Modeling of Tracking-Type Floating Photovoltaic System based on Matlab/Simulink (매틀랩/시뮬링크 기반 추적식 수상태양광 발전시스템의 모델링에 관한 연구)

  • Kim, In-Soo;Oh, Sung-Chan;Kim, Yang-Mo;Choi, Young-Kwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.805-811
    • /
    • 2015
  • Floating photovoltaic systems have been developed by the construction process such as design, construction, operation and management. Therefore, the power of floating photovoltaic systems has been calculated by using simple formulas and the optimal tracking interval is set by operation experience. But, flow characteristics have a decisive effect on it unlike land based PV systems. In this paper, a tracking floating photovoltaic system is modeled by using Matlab/simulink. The modeling for the floating photovoltaic system is verified through applying the flow characteristics based on actual operating data of 100㎾ class tracking floating photovoltaic.

A Study on Risk of Electric Shock from Damaged Grid Connection Cable in Floating Photovoltaic System (수상 태양광 발전설비 계통 연계 케이블 손상시 감전 위험에 관한 연구)

  • Song, Young-Sang;Jeon, Taehyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.14-19
    • /
    • 2014
  • Recently, many renewable energy generating businesses are ongoing progress due to the introduction of the RPS(Renewable Portfolio Standards) as well as the needs of environmentally friendly energy resources. Researches on photovoltaic system are actively being processed since the photovoltaic system is relatively easy to install and becomes commercialized in many domestic application areas. Furthermore, the floating photovoltaic system is likely to be installed more actively since the conventional photovoltaic system requires relatively large areas of land. Also, the floating photovoltaic system is more efficient than photovoltaic system installed in land due to the operation in lower temperature. However, safety problems such as electric shock could arise since the cable should be installed in the water. In this paper, the leakage current and the voltage rising are measured and analyzed for the case when the cables are damaged connecting the floating photovoltaic system to the grid.

On the Use of Maximum Likelihood and Input Data Similarity to Obtain Prediction Intervals for Forecasts of Photovoltaic Power Generation

  • Fonseca Junior, Joao Gari da Silva;Oozeki, Takashi;Ohtake, Hideaki;Takashima, Takumi;Kazuhiko, Ogimoto
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1342-1348
    • /
    • 2015
  • The objective of this study is to propose a method to calculate prediction intervals for one-day-ahead hourly forecasts of photovoltaic power generation and to evaluate its performance. One year of data of two systems, representing contrasting examples of forecast’ accuracy, were used. The method is based on the maximum likelihood estimation, the similarity between the input data of future and past forecasts of photovoltaic power, and on an assumption about the distribution of the error of the forecasts. Two assumptions for the forecast error distribution were evaluated, a Laplacian and a Gaussian distribution assumption. The results show that the proposed method models well the photovoltaic power forecast error when the Laplacian distribution is used. For both systems and intervals calculated with 4 confidence levels, the intervals contained the true photovoltaic power generation in the amount near to the expected one.

National Certified License Tests for the Facility Management of New and Renewable Energy (Photovoltaic Cell) (신재생에너지 (태양광) 설비 국가 공인 자격증 시험)

  • Jo, Min-Jung;Hwang, Un-Jei;Park, Rei-Hyan;Jo, Dong-Hyun;Kim, Jong-Do;Park, Eun-Hye;Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.126-139
    • /
    • 2013
  • New national certified license tests for the facility management of new and renewable energy is given from this year. There are three national certified licenses including craftsman, industrial engineer and engineer. The subjects for the craftsman are photovoltaic facility for written exam and practical business of photovoltaic facility for writing exam. The subjects for the industrial engineer are theory, construction, management and law of the photovoltaic system for written exam and practical business of photovoltaic system for writing exam. The subjects for the engineer add one more subject compared with the industrial engineer, such as design of photovoltaic system. The first tests were given in september 28 in this year. The tests will be given three in 2014.

Development of Maintenance-Service Model for Small Photovoltaic Equipment (소형 태양광발전설비의 유지관리 서비스 모델 개발)

  • Kang, Seok-Hwa;Park, Byeong-Hun;Choei, Jong-Won;Kim, Jae-Yeob
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.234-235
    • /
    • 2015
  • In South Korea, small photovoltaic equipment is increasingly adopted in more detached houses on the constant basis. With this broader use of small photovoltaic equipment, its systematic maintenance becomes all the more necessary. However, photovoltaic facility maintenance has been concentrated solely on large-scale solar energy generation plants in the country while hardly covering smaller facilities. In this research, the JEM rule and extant maintenance company services were analyzed to develop a proper maintenance model for small photovoltaic equipment. The maintenance service procedures designed herein are as follows: A small photovoltaic equipment user chooses a maintenance company and signs a contract. Once a contract is made, the Korea Energy Management Corporation provides a certain kind of incentive to the company. The company provides maintenance service to the user and receives a service fee. If such a maintenance service model is in place, small photovoltaic equipment efficiency is expected to increase and users could receive systematic maintenance services. Also the new creation of small photovoltaic equipment maintenance service would form a new market to generate more jobs for the society.

  • PDF

Implementation of the 50kW Utility Interconnected Photovoltaic System Simulator (50kW급 계통연계형 태양광발전시스템의 시뮬레이터 구현)

  • Jeong, Byeong-Ho;Park, Jeong-Min;Cho, Geum-Bae;Baek, Hyung-Lae;Chung, Soo-Bok
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.21-27
    • /
    • 2005
  • This paper summarizes the results of these efforts by offering a photovoltaic system structure in 50kW middle scale applications installed in Cho-sun University dormitory roof. The combination of photovoltaic system components are interconnected and system monitoring system will be summarized for the purpose of the increasing safety in this article. This paper describes configuration of utility interactive photovoltaic system which generated electric power supplies to dormitory. In order to installing the middle or large scale photovoltaic system, It must investigated the optimal design of system, compute quantity of power generation, economic rate of return and so on. In this paper represent 50kW utility photovoltaic system examination and developed simulation results. The performance of photovoltaic system has been evaluated and analyzed with simulation. The results obtained in this research will be much useful to prior investigation for installing utility interactive photovoltaic system.