• Title/Summary/Keyword: phototrophs

Search Result 8, Processing Time 0.024 seconds

Effects of rice straw application on the biological nitrogen fixation of paddy field -2. Effects of rice straw annual application on the biological activities and nitrogen fixing microbial flora (논토양의 생물적(生物的) 질소고정(窒素固定)에 미치는 볏짚시용효과(施用效果) -II. 질소고정미생물(窒素固定微生物) flora와 그 활성(活性)에 미치는 볏짚연용효과(連用效果))

  • Yoo, Ick-Dong;Matsuguchi, Tatsuhiko
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.443-449
    • /
    • 1988
  • The effects of rice-straw annual application on nitrogen fixing microbial flora in the soil of paddy fields and their biological activities were investigated. Experiments were performed in both NPK fertilizer applied soil and rice-straw applied soil of Agricultural Station in Aomori-ken, Japan. The following results were obtained. 1. The ARA by phototrophs was significantly increased in both soil plots. From the soil plot in which 300ppm-nitrogen was applied, the increase of ARA began to be seen from three weeks later. On the other hand, 33ppm-nitrogen applied soil plot and non-nitrogen applied soil plot showed the ARA increase from the beginning. The amount of ARA by non-phototrophs was only one-tenth of that by phototrophs. 2. For the first three weeks, the phototrophic bacteria (mainly Rhodopseudomonas) were predominant in both soil plots. Since then, as the ARA rapidly increased, the proliferation of blue-green algae forming heterocysts was remarkably promoted. Such effects were more distinct in the rice-straw annually applied soil plot than in the NPK fertilizer annually applied soil plot. 3. The degree of proliferation of blue-green algae depended on the amount of applied nitrogen. While Anabaena, Nostoc and Cylindrospermum were largely proliferated in the non-nitrogen applied soil plot, Cylindrospermum and Calothrix were in the 33ppm-nitrogen applied soil plot, but Calothrix tended to predominated in the 100ppm-nitrogen applied soil plot.

  • PDF

Use of Benthic Algae and Bryophytes for Monitoring Rivers

  • Whitton, Brian A.
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.95-100
    • /
    • 2013
  • Many countries have adopted a single, well-described approach to the use of phototrophs for monitoring river water quality, which involves the use of indices related to diatom composition at a site. Increasingly these indices have focussed on assessing ambient phosphate concentration. However, there is a wide range of other methods which can provide additional information to make up for any weaknesses in the standard method. Some of these methods are reviewed briefly here. They can be useful, for instance, when considering temporal and spatial variability in phosphate concentration at a particular site and providing much more insight on heavy metal or pesticide pollution than revealed by routine water analysis.

광합성세균 미생물막반응기에 의한 유기성폐수의 처리특성

  • Oh, Kwang-Keun;Lee, Cheol-Woo;Jeon, Yeong-Joong;Lee, Jae-Heung
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.6
    • /
    • pp.738-742
    • /
    • 1996
  • An efficient packed-bed type biofilm reactor charged with immobilized phototrophs was developed to treat organic wastewater at an extremely high volumetric loading rate. The packed bed reactor (PBR) charged with porous ceramic beads was superior to a fluidized-bed reactor suspended with activated carbon powders in terms of many aspects such as BOD removal efficiency, operational stability, and overall economics. For wastewater with BOD concentration as high as 20, 000mg/l, the BOD removal efficiency was maintained above 90% when the hydraulic retention time (HRT) was longer than 1 day. The allowable volumetric BOD loading rate of this reactor (20gBOD/l day) is more than ten-folds higher than that of an ordinary activated sludge method. The behaviour of the reactor was represented well by a Monod type kinetic equation with a maximum specific BOD loading rate(P) of 22.2gBOD/l day and a half saturation constant(K$_{s}$) of 1, 750 mgBOD/l.

  • PDF

광합성세균에 의한 미생물막의 형성

  • Oh, Kwang-Keun;Lee, Cheol-Woo;Jeon, Yeong-Joong;Lee, Jae-Heung
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.6
    • /
    • pp.733-737
    • /
    • 1996
  • The formation of microbial films(biofilm) by a non-sulfur phototrophic bacteria, Rhodopseudomonas capsulata, on inorganic media was studied. Porous ceramic beads(PCB) were superior to other immobilizing media for the biofilm formation in a packed-bed reactor. It was found that the formation of microbial films favored a lower hydraulic retention time, showing a higher ratio of cells attatched to the media to those suspended in the solution. The cell concentration in the biofilm reactor was as high as 11,400mg/l, which is 8-folds of the cell concentration in an ordinary suspended treatment. It was observed that the formation of micribial film by R. capsulata followed a general serial process of cell attachment, microcolony formation, and biofilm formation. The microbial films thus formed was very stable even for an extremely high volumetric BOD loading rate of 15gBOD/l day. The scanning electron micrographs of the microbial films showed that the cells were attached to both the surface and pores of the media.

  • PDF

Ascophyllum and Its Symbionts. VII. Three-way Interactions Among Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli (Ascomycetes) and Vertebrata lanosa (Rhodophyta)

  • Garbary, David J.;Deckert, Ron J.;Hubbard, Charlene B.
    • ALGAE
    • /
    • v.20 no.4
    • /
    • pp.353-361
    • /
    • 2005
  • Ascophyllum nodosum (L.) Le Jolis has a systemic infection with the ascomycete Mycophycias ascophylli (Cotton) Kohlmeyer and Volkmann-Kohlmeyer with which it establishese a mutualistic symbiosis. In addition, A. nodosum is the host for the obligate red algal epiphyte, Vertebrata lanosa (L.) Christensen. Using light and electron microscopy we describe morphological and cytochemical changes occurring as a consequence of rhizoid penetration of V. lanosa into cortical host tissue. Rhizoids induce localized cell necrosis based on physical damage during rhizoid penetration. Host cells adjacent to the rhizoid selectively undergo a hypersensitive reaction in which they become darkly pigmented and become foci for hyphal development. Light and electron microscopy show that M. ascophylli forms dense hyphal aggregations on the surface of the V. lanosa rhizoid and extensive endophytic hyphal growths in the rhizoid wall. This is the first morphological evidence of an interaction between M. ascophylli and V. lanosa. We speculate that M. ascophylli may be interacting with V. lanosa to limit tissue damage to their shared host. In addition, the fungus provides a potential pathway for the transfer of materials (e.g., nutrients and photosynthate) between the two phototrophs.

Multi-component kinetics for the growth of the cyanobacterium Synechocystis sp. PCC6803

  • Kim, Hyun-Woo;Park, Seongjun;Rittmann, Bruce E.
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.347-355
    • /
    • 2015
  • The growth kinetics of phototrophic microorganisms can be controlled by the light irradiance, the concentration of an inorganic nutrient, or both. A multi-component kinetic model is proposed and tested in novel batch experiments that allow the kinetic parameters for each factor to be estimated independently. For the cyanobacterium Synechocystis sp. PCC6803, the estimated parameters are maximum specific growth rate $({\mu}_{max})=2.8/d$, half-maximum-rate light irradiance $(K_L)=11W/m^2$, half-inhibition-rate light irradiance $(K_{L,I})=39W/m^2$, and half-maximum-rate concentration for inorganic carbon $(K_{S,Ci})=0.5mgC/L$, half-maximum-rate concentration for inorganic nitrogen $(K_{S,Ni})=1.4mgN/L$, and half-maximum-rate concentration for inorganic phosphorus $(K_{S,Pi})=0.06mgP/L$. Compared to other phototrophs having ${\mu}max$ estimates, PCC6803 is a fast-growing r-strategist relying on reaction rate. Its half-maximum-rate and half-inhibition rate values identify the ranges of light irradiance and nutrient concentrations that PCC6803 needs to achieve a high specific growth rate to be a sustainable bioenergy source. To gain the advantages of its high maximum specific growth rate, PCC6803 needs to have moderate light illumination ($7-62W/m^2$ for ${\mu}_{syn}{\geq}1/d$) and relatively high nutrient concentrations: $N_i{\geq}2.3 mgN/L$, $P_i{\geq}0.1mgP/L$, and $C_i{\geq}1.0mgC/L$.

Effects of Rice Straw Application on the Biological Nitrogen Fixation of Paddy Fields. -I. Effects of Application Method of Rice Straw on the Nitrogen Fixing Activity (논 토양(土壤)의 생물적(生物的) 질소고정(窒素固定)에 미치는 볏짚 시용효과(施用効果) -I. 볏짚 시용방법(施用方法)이 질소고정활성(窒素固定活性)에 미치는 영향(影響))

  • Yoo, Ick-Dong;Matsuguchi, Tatsuhiko
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.77-83
    • /
    • 1983
  • Effects of rice straw application (particularly application method; surface placement and deep placement) on the biological nitrogen fixing activity of paddy fields and on the growth of rice plant have been investigated by the lysimeter experiment with Aragawa alluvial soil and Tochigi ando soil. 1. Nitrogen fixing activity of plow layer (0~1cm) was increased by the rice straw application, notably by the phototrophs, both deep placement and surface placement, between 1 and 2 months of initial growth stage of rice plant. 2. Surface placement method stimulated the nitrogen fixing activity more significantly them the deep placement method, and also showed good effects on the growth of rice plant. 3. The increased of effect on the nitrogen fixing activity of surface placed area was found to be originated from the applied rice straw and its neigh bouring area. 4. Nitrogen fixing activity of surface placed rice straw was rather promoted by the application of herbicides (2, 4, 6-arichlorophenyl ether) than the non-applicated plot.

  • PDF

Studies on C2H2-C2H4 reducing activities (N2-fixing) in paddy soil (논토양(土壤) 질소고정(窒素固定) 미생물(微生物)의 활성(活性)에 관(關)한 연구(硏究))

  • Lee, Sang-Kyu;Lee, Myeong-Gu;Lim, Sun-Uk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.1
    • /
    • pp.23-28
    • /
    • 1977
  • Acetylene-ethylene($C_2H_2-C_2H_4$) assay was carried out to find the heterotrophic nitrogen-fixing activities and distribution of nitrogen fixers in eleven different soil series which are located in Kyeonggi province. Following are the summaries of this study. 1. Acetylene-reducing activities were higher in Gwanghwal, Mangyeong and Buyong series which are derived from fluviomarine deposite than in Yeongsan, Hamchang and Pyeongtack series which are observed from continental alluvial plain. The lowest activities are observed in Yecheon, Hoegog, and Jisan series which are situated in local valley region. 2. Estimated amouts of $N_2$ per annum fixed by $N_2$-fixing heterotrophs were about 3.2kg in fuluvio marine soils, 2.6kg in continental alluvial plain and 2.0kg/10a in local valley region, respectively. 3. Azotobacter and Beijerinckia were not detected in any of the ten different soil series except in Pyeongtaeg series. However, Clostridia, anaerobic nitrogen fixer, was detected in order of ${\times}10^2$. It is assumed that these population are not enough to contribute to the nitrogen supply by the biological fixation in paddy soil. 4. For the assesment of heterotrophic nitrogen fixation in paddy soil, it must be presumed that aerobes, anaerobes and phototrophs which can grow on nitrogen free media may greatly contribute for the asymbiotic netrogen fixation.

  • PDF