DOI QR코드

DOI QR Code

Multi-component kinetics for the growth of the cyanobacterium Synechocystis sp. PCC6803

  • Kim, Hyun-Woo (Department of Environmental Engineering, Chonbuk National University) ;
  • Park, Seongjun (Technology Development Team, Construction Technology Division, Samsung C&T) ;
  • Rittmann, Bruce E. (Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University)
  • Received : 2015.04.09
  • Accepted : 2015.09.13
  • Published : 2015.12.31

Abstract

The growth kinetics of phototrophic microorganisms can be controlled by the light irradiance, the concentration of an inorganic nutrient, or both. A multi-component kinetic model is proposed and tested in novel batch experiments that allow the kinetic parameters for each factor to be estimated independently. For the cyanobacterium Synechocystis sp. PCC6803, the estimated parameters are maximum specific growth rate $({\mu}_{max})=2.8/d$, half-maximum-rate light irradiance $(K_L)=11W/m^2$, half-inhibition-rate light irradiance $(K_{L,I})=39W/m^2$, and half-maximum-rate concentration for inorganic carbon $(K_{S,Ci})=0.5mgC/L$, half-maximum-rate concentration for inorganic nitrogen $(K_{S,Ni})=1.4mgN/L$, and half-maximum-rate concentration for inorganic phosphorus $(K_{S,Pi})=0.06mgP/L$. Compared to other phototrophs having ${\mu}max$ estimates, PCC6803 is a fast-growing r-strategist relying on reaction rate. Its half-maximum-rate and half-inhibition rate values identify the ranges of light irradiance and nutrient concentrations that PCC6803 needs to achieve a high specific growth rate to be a sustainable bioenergy source. To gain the advantages of its high maximum specific growth rate, PCC6803 needs to have moderate light illumination ($7-62W/m^2$ for ${\mu}_{syn}{\geq}1/d$) and relatively high nutrient concentrations: $N_i{\geq}2.3 mgN/L$, $P_i{\geq}0.1mgP/L$, and $C_i{\geq}1.0mgC/L$.

Keywords

References

  1. Wahlen BD, Morgan MR, McCurdy AT, et al. Biodiesel from Microalgae, Yeast, and Bacteria: Engine Performance and Exhaust Emissions. Energy & Fuels. 2012;27:220-228.
  2. Campbell JE, Lobell DB, Field CB. Greater Transportation Energy and GHG Offsets from Bioelectricity Than Ethanol. Science 2009;324:1055-1057. https://doi.org/10.1126/science.1168885
  3. Rittmann BE. Opportunities for renewable bioenergy using microorganisms. Biotechnol. Bioeng. 2008;100:203-212. https://doi.org/10.1002/bit.21875
  4. Berg JM, Tymoczko JL, Stryer L. Biochemistry. 6 ed: W.H. Freeman; 2006.
  5. Fernandez FGA, Camacho FG, Perez JAS, Sevilla JMF, Grima EM. A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnol. Bioeng. 1997;55:701-714. https://doi.org/10.1002/(SICI)1097-0290(19970905)55:5<701::AID-BIT1>3.0.CO;2-F
  6. Wolf G, Picioreanu C, van Loosdrecht MCM. Kinetic modeling of phototrophic biofilms: The PHOBIA model. Biotechnol. Bioeng. 2007;97:1064-1079. https://doi.org/10.1002/bit.21306
  7. Ogbonna JC, Tanaka H. Light requirement and photosynthetic cell cultivation - Development of processes for efficient light utilization in photobioreactors. J. Appl. Phycol. 2000;12:207-218. https://doi.org/10.1023/A:1008194627239
  8. Andrews JF. A mathematical model for continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 1968;10:707-723. https://doi.org/10.1002/bit.260100602
  9. Cornet JF, Dussap CG, Cluzel P, Dubertret G. A structured model for simulation of cultures of the cyanobacterium Spirulina-Platensis in photobioreactors: II. Identification of kinetic-parameters under light and mineral limitations. Biotechnol. Bioeng. 1992;40:826-834. https://doi.org/10.1002/bit.260400710
  10. Bae W, Rittmann BE. Responses of intracellular cofactors to single and dual substrate limitations. Biotechnol. Bioeng. 1996;49:690-699. https://doi.org/10.1002/(SICI)1097-0290(19960320)49:6<690::AID-BIT11>3.3.CO;2-B
  11. Suh IS, Lee SB. A light distribution model for an internally radiating photobioreactor. Biotechnol. Bioeng. 2003;82:180-189. https://doi.org/10.1002/bit.10558
  12. Evers EG. A model for light-limited continuous cultures-Growth, shading, and maintenance. Biotechnol. Bioeng. 1991;38:254-259. https://doi.org/10.1002/bit.260380307
  13. Mikami K, Kanesaki Y, Suzuki I, Murata N. The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp PCC 6803. Mol. Microbiol. 2002;46:905-915. https://doi.org/10.1046/j.1365-2958.2002.03202.x
  14. Angermayr SA, Hellingwerf KJ, Lindblad P, de Mattos MJT. Energy biotechnology with cyanobacteria. Curr. Opin. Biotechnol. 2009;20:257-263. https://doi.org/10.1016/j.copbio.2009.05.011
  15. McCree KJ. Test of current difinitions of photosynthetically active radiation against leaf photosynthesis data. Agric. Meteorol. 1972;10:443-453. https://doi.org/10.1016/0002-1571(72)90045-3
  16. Kim HW, Vannela R, Zhou C, Harto C, Rittmann BE. Photoautotrophic Nutrient Utilization and Limitation During Semi-Continuous Growth of Synechocystis sp PCC6803. Biotechnol. Bioeng. 2010;106:553-563. https://doi.org/10.1002/bit.22724
  17. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 1979;111:1-61.
  18. Snoeyink VL, Jenkins D. Water Chemistry. New York: John Wiley & Sons; 1980.
  19. Eaton AD, Clesceri LS, Rice EW, Greenberg AE, Franson MAH. Standard Methods for the Examination of Water and Wastewater. 21 ed. Washington, D.C.: American Public Health Association; 2005.
  20. Allen MM, Smith AJ. Nitrogen chlorosis in blue-green algae. Arch. Mikrobiol. 1969;69:114-120. https://doi.org/10.1007/BF00409755
  21. Stevens SE, Balkwill DL, Paone DAM. The effects of nitrogen limitation on the ultrastructure of the cyanobacterium Agmenellum-Quadruplicatum. Arch. Microbiol. 1981;130:204-212. https://doi.org/10.1007/BF00459520
  22. Guschina IA, Dobson G, Harwood JL. Lipid metabolism in cultured lichen photobionts with different phosphorus status. Phytochemistry 2003;64:209-217. https://doi.org/10.1016/S0031-9422(03)00279-6
  23. Stevens SE, Paone DAM, Balkwill DL. Accumulations of cyanophycin granues as a result of phosphate limitation in Agmenellum-Quadruplicatum. Plant Physiol. 1981;67:716-719. https://doi.org/10.1104/pp.67.4.716
  24. Lu X, Leng Y. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials 2005;26:1097-1108. https://doi.org/10.1016/j.biomaterials.2004.05.034
  25. Ogawa T, Kaplan A. Inorganic carbon acquisition systems in cyanobacteria. Photosyn. Res. 2003;77:105-115. https://doi.org/10.1023/A:1025865500026
  26. Shibata M, Ohkawa H, Katoh H, Shimoyama M, Ogawa T. Two $CO_2$ uptake systems in cyanobacteria: four systems for inorganic carbon acquisition in Synechocystis sp strain PCC6803. Funct. Plant Biol. 2002;29:123-129. https://doi.org/10.1071/PP01188
  27. Wang JS, Araki T, Ogawa T, Matsuoka M, Fukuda H. A method of graphically analyzing substrate-inhibition kinetics. Biotechnol. Bioeng. 1999;62:402-411. https://doi.org/10.1002/(SICI)1097-0290(19990220)62:4<402::AID-BIT3>3.0.CO;2-V
  28. Rittmann BE, McCarty PL. Environmental Biotechnology: Principles and Applications: McGraw-Hill Publishing Co.; 2001.
  29. Kim HW, Vannela R, Zhou C, Rittmann BE. Nutrient Acquisition and Limitation for the Photoautotrophic Growth of Synechocystis sp PCC6803 as a Renewable Biomass Source. Biotechnol. Bioeng. 2011;108:277-285. https://doi.org/10.1002/bit.22928
  30. Ritchie RJ, Trautman DA, Larkum AWD. Phosphate uptake in the cyanobacterium Synechococcus R-2 PCC 7942. Plant Cell Physiol. 1997;38:1232-1241. https://doi.org/10.1093/oxfordjournals.pcp.a029110
  31. Aslan S, Kapdan IK. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 2006;28:64-70. https://doi.org/10.1016/j.ecoleng.2006.04.003
  32. Lee HY, Erickson LE, Yang SS. Kinetics and bioenergetics of ligh-limited photoautotrophic growth of Spirulina-Platensis. Biotechnol. Bioeng. 1987;29:832-843. https://doi.org/10.1002/bit.260290705
  33. Lee DY, Rhee GY. Kinetics of growth and death in Anabaena flos-aquae (cyanobacteria) under light limitation and supersaturation. J. Phycol. 1999;35:700-709. https://doi.org/10.1046/j.1529-8817.1999.3540700.x
  34. Fouchard S, Pruvost J, Degrenne B, Titica M, Legrand J. Kinetic Modeling of Light Limitation and Sulfur Deprivation Effects in the Induction of Hydrogen Production With Chlamydomonas reinhardtii: Part I. Model Development and Parameter Identification. Biotechnol. Bioeng. 2009;102:232-245. https://doi.org/10.1002/bit.22034
  35. Yun YS, Park JM. Kinetic modeling of the light-dependent photosynthetic activity of the green microalga Chlorella vulgaris. Biotechnol. Bioeng. 2003;83:303-311. https://doi.org/10.1002/bit.10669
  36. Novak JT, Brune DE. Inorganic carbon limited growth-kinetics of some fresh-water algae. Water Res. 1985;19:215-225. https://doi.org/10.1016/0043-1354(85)90203-9
  37. Gotham IJ, Rhee GY. Comparative kinetic-studies of nitrate-limited growth and nitrate uptake in photoplankton in continuous culture. J. Phycol. 1981;17:309-314. https://doi.org/10.1111/j.0022-3646.1981.00309.x
  38. Gotham IJ, Rhee GY. Comparative kinetic-studies of phosphate-limited growth and phosphate uptake in photoplankton in continuous culture. J. Phycol. 1981;17:257-265. https://doi.org/10.1111/j.1529-8817.1981.tb00848.x
  39. Isvanovics V, Shafik HM, Presing M, Juhos S. Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshw. Biol. 2000;43:257-275. https://doi.org/10.1046/j.1365-2427.2000.00549.x

Cited by

  1. Enhanced Microalgal Growth and Effluent Quality in Tertiary Treatment of Livestock Wastewater Using a Sequencing Batch Reactor vol.228, pp.9, 2017, https://doi.org/10.1007/s11270-017-3547-6
  2. Photoautotrophic Microalgae Screening for Tertiary Treatment of Livestock Wastewater and Bioresource Recovery vol.9, pp.3, 2017, https://doi.org/10.3390/w9030192
  3. Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation vol.33, pp.11, 2016, https://doi.org/10.1089/ees.2016.0132
  4. Effect of permeate recycling and light intensity on growth kinetics of Synechocystis sp. PCC 6803 vol.27, pp.None, 2015, https://doi.org/10.1016/j.algal.2017.09.008
  5. Optimal Temperature and Light Intensity for Improved Mixotrophic Metabolism of Chlorella sorokiniana Treating Livestock Wastewater vol.27, pp.11, 2015, https://doi.org/10.4014/jmb.1707.07007
  6. Continuous Cultivation as a Method to Assess the Maximum Specific Growth Rate of Photosynthetic Organisms vol.7, pp.None, 2015, https://doi.org/10.3389/fbioe.2019.00274
  7. Coupling cold plasma and membrane photobioreactor for enhanced fouling control during livestock excreta treatment vol.265, pp.None, 2021, https://doi.org/10.1016/j.chemosphere.2020.129031
  8. Determination of photoautotrophic growth and inhibition kinetics by the Monod and the Aiba models and bioenergetics of local microalgae strain vol.292, pp.None, 2015, https://doi.org/10.1016/j.chemosphere.2021.133330