References
- Wahlen BD, Morgan MR, McCurdy AT, et al. Biodiesel from Microalgae, Yeast, and Bacteria: Engine Performance and Exhaust Emissions. Energy & Fuels. 2012;27:220-228.
- Campbell JE, Lobell DB, Field CB. Greater Transportation Energy and GHG Offsets from Bioelectricity Than Ethanol. Science 2009;324:1055-1057. https://doi.org/10.1126/science.1168885
- Rittmann BE. Opportunities for renewable bioenergy using microorganisms. Biotechnol. Bioeng. 2008;100:203-212. https://doi.org/10.1002/bit.21875
- Berg JM, Tymoczko JL, Stryer L. Biochemistry. 6 ed: W.H. Freeman; 2006.
- Fernandez FGA, Camacho FG, Perez JAS, Sevilla JMF, Grima EM. A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnol. Bioeng. 1997;55:701-714. https://doi.org/10.1002/(SICI)1097-0290(19970905)55:5<701::AID-BIT1>3.0.CO;2-F
- Wolf G, Picioreanu C, van Loosdrecht MCM. Kinetic modeling of phototrophic biofilms: The PHOBIA model. Biotechnol. Bioeng. 2007;97:1064-1079. https://doi.org/10.1002/bit.21306
- Ogbonna JC, Tanaka H. Light requirement and photosynthetic cell cultivation - Development of processes for efficient light utilization in photobioreactors. J. Appl. Phycol. 2000;12:207-218. https://doi.org/10.1023/A:1008194627239
- Andrews JF. A mathematical model for continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 1968;10:707-723. https://doi.org/10.1002/bit.260100602
- Cornet JF, Dussap CG, Cluzel P, Dubertret G. A structured model for simulation of cultures of the cyanobacterium Spirulina-Platensis in photobioreactors: II. Identification of kinetic-parameters under light and mineral limitations. Biotechnol. Bioeng. 1992;40:826-834. https://doi.org/10.1002/bit.260400710
- Bae W, Rittmann BE. Responses of intracellular cofactors to single and dual substrate limitations. Biotechnol. Bioeng. 1996;49:690-699. https://doi.org/10.1002/(SICI)1097-0290(19960320)49:6<690::AID-BIT11>3.3.CO;2-B
- Suh IS, Lee SB. A light distribution model for an internally radiating photobioreactor. Biotechnol. Bioeng. 2003;82:180-189. https://doi.org/10.1002/bit.10558
- Evers EG. A model for light-limited continuous cultures-Growth, shading, and maintenance. Biotechnol. Bioeng. 1991;38:254-259. https://doi.org/10.1002/bit.260380307
- Mikami K, Kanesaki Y, Suzuki I, Murata N. The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp PCC 6803. Mol. Microbiol. 2002;46:905-915. https://doi.org/10.1046/j.1365-2958.2002.03202.x
- Angermayr SA, Hellingwerf KJ, Lindblad P, de Mattos MJT. Energy biotechnology with cyanobacteria. Curr. Opin. Biotechnol. 2009;20:257-263. https://doi.org/10.1016/j.copbio.2009.05.011
- McCree KJ. Test of current difinitions of photosynthetically active radiation against leaf photosynthesis data. Agric. Meteorol. 1972;10:443-453. https://doi.org/10.1016/0002-1571(72)90045-3
- Kim HW, Vannela R, Zhou C, Harto C, Rittmann BE. Photoautotrophic Nutrient Utilization and Limitation During Semi-Continuous Growth of Synechocystis sp PCC6803. Biotechnol. Bioeng. 2010;106:553-563. https://doi.org/10.1002/bit.22724
- Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 1979;111:1-61.
- Snoeyink VL, Jenkins D. Water Chemistry. New York: John Wiley & Sons; 1980.
- Eaton AD, Clesceri LS, Rice EW, Greenberg AE, Franson MAH. Standard Methods for the Examination of Water and Wastewater. 21 ed. Washington, D.C.: American Public Health Association; 2005.
- Allen MM, Smith AJ. Nitrogen chlorosis in blue-green algae. Arch. Mikrobiol. 1969;69:114-120. https://doi.org/10.1007/BF00409755
- Stevens SE, Balkwill DL, Paone DAM. The effects of nitrogen limitation on the ultrastructure of the cyanobacterium Agmenellum-Quadruplicatum. Arch. Microbiol. 1981;130:204-212. https://doi.org/10.1007/BF00459520
- Guschina IA, Dobson G, Harwood JL. Lipid metabolism in cultured lichen photobionts with different phosphorus status. Phytochemistry 2003;64:209-217. https://doi.org/10.1016/S0031-9422(03)00279-6
- Stevens SE, Paone DAM, Balkwill DL. Accumulations of cyanophycin granues as a result of phosphate limitation in Agmenellum-Quadruplicatum. Plant Physiol. 1981;67:716-719. https://doi.org/10.1104/pp.67.4.716
- Lu X, Leng Y. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials 2005;26:1097-1108. https://doi.org/10.1016/j.biomaterials.2004.05.034
- Ogawa T, Kaplan A. Inorganic carbon acquisition systems in cyanobacteria. Photosyn. Res. 2003;77:105-115. https://doi.org/10.1023/A:1025865500026
-
Shibata M, Ohkawa H, Katoh H, Shimoyama M, Ogawa T. Two
$CO_2$ uptake systems in cyanobacteria: four systems for inorganic carbon acquisition in Synechocystis sp strain PCC6803. Funct. Plant Biol. 2002;29:123-129. https://doi.org/10.1071/PP01188 - Wang JS, Araki T, Ogawa T, Matsuoka M, Fukuda H. A method of graphically analyzing substrate-inhibition kinetics. Biotechnol. Bioeng. 1999;62:402-411. https://doi.org/10.1002/(SICI)1097-0290(19990220)62:4<402::AID-BIT3>3.0.CO;2-V
- Rittmann BE, McCarty PL. Environmental Biotechnology: Principles and Applications: McGraw-Hill Publishing Co.; 2001.
- Kim HW, Vannela R, Zhou C, Rittmann BE. Nutrient Acquisition and Limitation for the Photoautotrophic Growth of Synechocystis sp PCC6803 as a Renewable Biomass Source. Biotechnol. Bioeng. 2011;108:277-285. https://doi.org/10.1002/bit.22928
- Ritchie RJ, Trautman DA, Larkum AWD. Phosphate uptake in the cyanobacterium Synechococcus R-2 PCC 7942. Plant Cell Physiol. 1997;38:1232-1241. https://doi.org/10.1093/oxfordjournals.pcp.a029110
- Aslan S, Kapdan IK. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 2006;28:64-70. https://doi.org/10.1016/j.ecoleng.2006.04.003
- Lee HY, Erickson LE, Yang SS. Kinetics and bioenergetics of ligh-limited photoautotrophic growth of Spirulina-Platensis. Biotechnol. Bioeng. 1987;29:832-843. https://doi.org/10.1002/bit.260290705
- Lee DY, Rhee GY. Kinetics of growth and death in Anabaena flos-aquae (cyanobacteria) under light limitation and supersaturation. J. Phycol. 1999;35:700-709. https://doi.org/10.1046/j.1529-8817.1999.3540700.x
- Fouchard S, Pruvost J, Degrenne B, Titica M, Legrand J. Kinetic Modeling of Light Limitation and Sulfur Deprivation Effects in the Induction of Hydrogen Production With Chlamydomonas reinhardtii: Part I. Model Development and Parameter Identification. Biotechnol. Bioeng. 2009;102:232-245. https://doi.org/10.1002/bit.22034
- Yun YS, Park JM. Kinetic modeling of the light-dependent photosynthetic activity of the green microalga Chlorella vulgaris. Biotechnol. Bioeng. 2003;83:303-311. https://doi.org/10.1002/bit.10669
- Novak JT, Brune DE. Inorganic carbon limited growth-kinetics of some fresh-water algae. Water Res. 1985;19:215-225. https://doi.org/10.1016/0043-1354(85)90203-9
- Gotham IJ, Rhee GY. Comparative kinetic-studies of nitrate-limited growth and nitrate uptake in photoplankton in continuous culture. J. Phycol. 1981;17:309-314. https://doi.org/10.1111/j.0022-3646.1981.00309.x
- Gotham IJ, Rhee GY. Comparative kinetic-studies of phosphate-limited growth and phosphate uptake in photoplankton in continuous culture. J. Phycol. 1981;17:257-265. https://doi.org/10.1111/j.1529-8817.1981.tb00848.x
- Isvanovics V, Shafik HM, Presing M, Juhos S. Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshw. Biol. 2000;43:257-275. https://doi.org/10.1046/j.1365-2427.2000.00549.x
Cited by
- Enhanced Microalgal Growth and Effluent Quality in Tertiary Treatment of Livestock Wastewater Using a Sequencing Batch Reactor vol.228, pp.9, 2017, https://doi.org/10.1007/s11270-017-3547-6
- Photoautotrophic Microalgae Screening for Tertiary Treatment of Livestock Wastewater and Bioresource Recovery vol.9, pp.3, 2017, https://doi.org/10.3390/w9030192
- Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation vol.33, pp.11, 2016, https://doi.org/10.1089/ees.2016.0132
- Effect of permeate recycling and light intensity on growth kinetics of Synechocystis sp. PCC 6803 vol.27, pp.None, 2015, https://doi.org/10.1016/j.algal.2017.09.008
- Optimal Temperature and Light Intensity for Improved Mixotrophic Metabolism of Chlorella sorokiniana Treating Livestock Wastewater vol.27, pp.11, 2015, https://doi.org/10.4014/jmb.1707.07007
- Continuous Cultivation as a Method to Assess the Maximum Specific Growth Rate of Photosynthetic Organisms vol.7, pp.None, 2015, https://doi.org/10.3389/fbioe.2019.00274
- Coupling cold plasma and membrane photobioreactor for enhanced fouling control during livestock excreta treatment vol.265, pp.None, 2021, https://doi.org/10.1016/j.chemosphere.2020.129031
- Determination of photoautotrophic growth and inhibition kinetics by the Monod and the Aiba models and bioenergetics of local microalgae strain vol.292, pp.None, 2015, https://doi.org/10.1016/j.chemosphere.2021.133330