• Title/Summary/Keyword: phototransformation

Search Result 5, Processing Time 0.02 seconds

A Molecular Model for Light Signal Perception and Interdomain Crosstalk in Phytochrome Photoreceptors

  • Song, Pill-Soon;Park, Chung-Mo
    • Journal of Photoscience
    • /
    • v.7 no.3
    • /
    • pp.79-86
    • /
    • 2000
  • Phytochromes are red and far-red light absorbing photoreceptors for photomorphogenesis in plants. The red/far wavelength reversible biliproteins are made up of two structural domains. The light-perceiving function of the photoreceptor resides in the N-terminal domain, whereas the signal transducing regulatory function is located within the C-terminal domain. The characteristic role of the phytochromes as phtosensory molecular switches is derived from the phototransformation between two distinct spectral forms, the red light absorbing Pr and the far-red light absorbing Pfr forms. The photoinduced Pr Pfr phototransformation accompanies subtle conformational changes throughout the phytochrome molecule. The conformational signals are subsequently transmitted to the C-terminal domain through various inter-domain crosstalks and induce the interaction of the activated C-terminal domain with phytochrome interacting factors. Thus the inter-domain crosstalks play critical roles in the photoactivation of the phytochromes. Posttranslational modifications, such as the phosphorylation of Ser-598, are also involved in this process through conformational changes and by modulating inter-domain signaling.

  • PDF

Photochromism of Phytochromes and Cph1 Requires Critical Amino Acids and Secondary Structure in the N-Terminal Domain

  • Seo Hak-Soo;Bhoo Seong-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1441-1447
    • /
    • 2006
  • The light perception and phototransformation of phytochromes are the first process of the phytochrome-mediated light signal transduction. The chromophore ligation and its photochromism of various site-specific and deletion mutants of pea phytochrome A and bacterial phytochrome-like protein (Cph1) were analyzed in vitro. Serial truncation mutants from the N-terminus and C-terminus indicated that the minimal N-terminal domain for the chromophore ligation spans from the residue 78 to 399 of pea phytochrome A. Site-specific mutants indicated that several residues are critical for the chromophore ligation and/or photochromism. Histidine-324 appears to serve as an anchimeric residue for photochromism through its H-bonding function. Isoleucine-80 and arginine-383 playa critical role for the chromophore ligation and photochromism. Arginine-383 is presumably involved in the stabilization of the Pfr form of pea phytochrome A. Apparently, the amphiphilic ${\alpha}$-helix centered around the residue-391 is in the chromophore pocket and critical for the chromophore ligation.

Binding of 59 Kilodalton Phytochrome from Avena sativa to Liposomes and Cibacron Blue Dye (귀리로 부터 얻은 59 KD phytochrome의 liposome과 Cibacron Blue Dye와의 결합성질)

  • Hahn, Tae-Ryong
    • Applied Biological Chemistry
    • /
    • v.32 no.2
    • /
    • pp.126-131
    • /
    • 1989
  • Binding properties of the degraded 59kD phytochrome from etiolated Avena sativa seedlings to liposomes and Cibacron Blue dye were examined. In contrast with the native 124kD and partially degraded 118kD phytochromes, the farred light absorbing(Pfr) forms of the 59kD phytochrome binds to liposomes and Cibacron Blue dye via electrostatic interactions. Results indicate that the 59kD Pfr does not hold a hydrophobic surface which is exposed upon Pr to Pfr phototransformation of the 124 and 118kD phytochromes. Since a relatively extensive hydrophobic region is located in the chromophore bearing domain(59kD) of phytochrome(Hershey et al., Nuc. Acids Res., 13, 8543, 1986), the 55kD tryptic domain from the C-terminus plays an important role on the exposure of the hydrophobic area in the 118 and 124 Pfr to occur.

  • PDF

Mechanism of the Cucumber Cotyledon Greening Induced by KC6361 in Darkness (암조건에서 오이자엽의 녹화를 유기시키는 KC-6361 화합물의 작용기구)

  • Kim, J.S.;Kim, T.J.;Cho, K.Y.
    • Korean Journal of Weed Science
    • /
    • v.14 no.3
    • /
    • pp.176-183
    • /
    • 1994
  • This study was conducted to investigate how KC6361, a new type diphenylether compound inducing bleaching, increase the greening of cucumber cotyledon in darkness. Protoporphyrin IX formation, reaccumulation rate of protochlorophyllide(Pchlide) in darkness after phototransformation and Shibata shift were not affected. Whereas, aminolevulinic acid(ALA), protochlorophyll and chlorophyll were increased, and especially protochlorophyll was significantly accumulated. When KC6361 and phytol were applied alone or in combination with ALA, the transformation from Pchlide into protochlorophyll was accelerated in darkness. These results suggest that the greening of the etiolated cucumber cotyledon treated with KC6361 seems to be caused by the accumulation of phytol or/and Geranylgeranylpyrophosphate and their increased esterification with Pchlide in darkness.

  • PDF