• 제목/요약/키워드: photosystem II

검색결과 145건 처리시간 0.027초

감귤 대목과 그것에 접목한 온주밀감의 엽록소 형광특성의 비교 (Comparison of Chlorophyll Fluorescence of Three Citrus Rootstocks and Satsuma Mandarin Grafted on Them)

  • 한상헌
    • 원예과학기술지
    • /
    • 제19권2호
    • /
    • pp.149-152
    • /
    • 2001
  • 3종의 감귤대목 탱자, 비룡, 시트르 메로와 그것에 접목한 온주밀감 '일남 1호'의 $CO_2$ 동화를 평가할 수 있는 엽록소 형광을 비교하였다. 강세 대목인 시트르 메로와 중간 대목인 탱자는 잠재적이며 실재적으로 거의 같은 광양자 흡수율을 나타냈지만, 약세 대목인 비룡은 암조건과 명조건에서 얻어진 Fo, Fs가 높기 때문에 상대적으로 낮은 광양자 흡수율을 보였다. 이러한 결과는 비룡은 흡수한 광 에너지 안테나 엽록소로부터 형광으로 손실이 되는 율이 높다는 것을 시사하고 있다. 그러나 이들 대목에 접목을 한 온주밀감은 잠재적이며 실재적으로 거의 같은 광양자 흡수율을 나타냈다. 이러한 사실로부터 대목은 접수의 양자 흡수율에 직접 영향을 미치지 않는다고 사료된다.

  • PDF

고려인삼 광계 II Chlorophyll a/b binding Protein 유전자(CAB)의 cloning 및 식물에의 활용연구 (Cloning of CAB cDNA encoding chlorophyll a/b binding protein of photosystem II in Korean ginseng and Use in Plant)

  • 김갑식;이기원;이종철;여운형;채순용;박은경
    • 한국연초학회지
    • /
    • 제21권2호
    • /
    • pp.152-159
    • /
    • 1999
  • A CAB cDNA clone(pKGCAB) encoding the light harvesting chlorophyll a/b binding protein of the semi-shade plant, Korean ginseng(Panax ginseng C. A. Meyer) was isolated by the one-way path random sequencing of ginseng cDNA library clones and transgenic tobacco plants(Nicotiana tabacum NC82) were produced by the transformation of this ginseng CAB gene in use of Agrobacterium tumefaciens LBA4404. The CAB gene showed type 1 structure of LHCP-II, 84% similarity in nucleotide sequence and 92% in amino acid sequence to that of Nicotiana tabacum CAB40, respectively. Seed germination and initial growth of the transgenic tobacco plants transformed with the cDNA fragment were accelerated under low light intensity compared with those of normal tobacco plant, that may result from the higher light sensitivity of the transgenic plants than that of the normal.

  • PDF

LOW DISSIPATION OF EXCITATION ENERGY IN THE PHOTOSYNTHETIC MACHINERY OF CHILLING-SENSITIVE PLANTS DURING LOWTEMPERATURE PHOTOINHIBITION

  • Moon, Byoung Yong;Lee, Shin Bum;Gong, Yong-Gun;Kang, In-Soon
    • Journal of Photoscience
    • /
    • 제5권2호
    • /
    • pp.53-61
    • /
    • 1998
  • Using a squash plant, a chilling-sensitive species, and a spinach plant, a chilling-resistant one, effects of chilling temperature on the photosynthetic machinery were studied in terms of chlorophyll fluorescence. When thylakoid membranes were isolated and subjected to incubation at different temperatures, spinach showed stable photosystem II activity at the low temperature side, in contrast to squash which showed quite severe inactivation at low temperature. When parameters of chlorophyll fluorescence were examined, chilling in darkness did not affect either Fv/Fm or photochemical and non-photochemical quenching, in both types of plants. However, chilling of squash plants under irradiance of medium intensity caused a specific decrease in Fv/Fm accompanied by a decline in energy-dependent quenching. Contrastingly, photosystem li of spinach plants were not much affected by light-chilling. When the pool size of zeaxanthin was examined after exposure to high light at different temperatures, squash plants was shown to have a much lower content of antheraxanthin + zeaxanthin, as compared to spinach plants, during low-temperature photoinhibition. These results suggest that chilling-sensitive plants have low capacity to dissipate excitation energy nonradiatively, when they are exposed to low-temperature photoinhibition, and, as a consequence, more vulnerable to photoinhibitory, damage to the photosynthetic apparatus.

  • PDF

보리 엽록체의 광계 II에서 수은, 구리 및 아연의 저해효과 비교 (Comparison of Toxic Effects of Mercury, Copper and Zinc on Photosystem II of Barley Cholroplasts)

  • 전현식
    • Journal of Plant Biology
    • /
    • 제36권3호
    • /
    • pp.195-201
    • /
    • 1993
  • The room temperature fluorescence induction of chloroplasts was utilized as a probe to locate the site of inhibition by mercury, copper and zinc on PS II by mercury. Inhibitory effect of Hg2+ on electron transport activity was notable as compared with Cu2+ and Zn2+. At concentrations of HgCl2 over 50 $\mu$M, activities of PS II and whole-chain electron transport decreased more than 70%, while that of PS I decreased about 10~30%. This suggests that PS II is more susceptible to Hg2+ than PS I is. In the presence of diphenylcarbazide (DPC), 50 $\mu$M HgCl2 inhibited the reduction of dichlorophenolindophenol (DCPIP) about 50%. Addition of heavy metals induced marked decrease in maximal variable fluorescence/initial fluorescence [(Fv)m/Fo], but no changes in Fo. With various concentrations of heavy metals, changes of chlorophyll a fluorescence emitted by PS II showed gradual decrease in photochemical quenching (qQ), which indicates an increase in reduced state of electron acceptor, QA. Especially, the addition of HgCl2 caused a notable decrease of qQ. In the presence of 50 $\mu$M CuCl2, energy-depended quenching (qE) was completely reduced, whereas in the presence of 50 $\mu$M CuCl2 and ZnCl2 it was still remained. The above results are discussed on the effects of mercury in relation to water-splitting system and plastoquinone (PQ) shuttle system.

  • PDF

엽록소형광분석을 이용한 담수산 클로렐라(Chlorella vulgaris)에 미치는 중금속의 영향 평가 (Assessment of Heavy Metal Effects on the Freshwater Microalga, Chlorella vulgaris, by Chlorophyll Fluorescence Analysis)

  • 오순자;고석찬
    • 한국환경과학회지
    • /
    • 제24권12호
    • /
    • pp.1591-1600
    • /
    • 2015
  • The response of the freshwater microalga, Chlorella vulgaris, to heavy metal stress was examined based on chlorophyll fluorescence analysis to assess the toxic effects of heavy metals in freshwater ecosystems. When toxic effects were analyzed using regular chlorophyll fluorescence analysis, photosystem II activity($F_v/F_m$) decreased significantly when exposed to $Cu^{2+}$ and $Hg^{2+}$ for 12 h, and decreased in the order of $Hg^{2+}>Cu^{2+}>Cd^{2+}>Ni^{2+}$ when exposed for 24h. The effective photochemical quantum yield(${\phi}{\prime}_{PSII}$), chlorophyll fluorescence decrease ratio($R_{Fd}$), minimal fluorescence yield($F_o$), and non-photochemical quenching(NPQ), but not photochemical quenching(qP), responded sensitively to $Hg^{2+}$, $Cu^{2+}$, and $Cd^{2+}$. These results suggest that $F_v/F_m$, as well as ${\phi}{\prime}_{PSII}$, $R_{Fd}$, $F_o$, and NPQ could be used to assess the effects of heavy metal ions in freshwater ecosystems. However, because many types of heavy metal ions and toxic compounds co-occur under natural conditions, it is difficult to assess heavy metal toxicity in freshwater ecosystems. When Chlorella was exposed to heavy metal ions for 12 or 24h, $F_v/F_m$ and maximal fluorescence yield($F_m$) changed in response to $Hg^{2+}$ and $Cu^{2+}$ based on image analysis. However, assessing quantitatively the toxic effects of several heavy metal ions is challenging.

제초제(除草劑)에 대한 식물(植物)의 저항성(抵抗性) (Resistance of Plants to Herbicide)

  • 김길웅
    • 한국잡초학회지
    • /
    • 제4권1호
    • /
    • pp.96-106
    • /
    • 1984
  • Changes in weed floras and development of plant resistance to herbicides seemed to be closely related with increased and repeated use of herbicides. Herbicide use increased from 5% of the total consumption of pesticide in 1950 to 45% in 1976 in world basis. About 200 herbicides have been introduced to agriculture so as to control about 206 weed species which have been recorded important to human beings. In Korea, there was about 351 times in increased use of herbicides from 1966 to 1982. Interspecific selection by herbicide is mainly responsible for changes in weed floras and resulted in varying tolerance or susceptibility to herbicides, together with the changes of agricultural practices. The present trend toward continuous cereal cultivation throughout world will lead to type of changes in weed floras favorable to therophyte which can survive under unfavorable conditions as seeds rather than the types of geophyte which can survive unfavorable seasons as buds placed below soil surface. However, geophyte such as Sagitaria pygmaea, and Scirpus jurtcoides, and Cyperus rotundus and Cynodon dactylon in temperate warm climate become severe paddy weeds, presumably because of the removal of annual weeds by herbicides. Since differential tolerance to 2,4-D was firstly reported in Agrostis stolofera, about 30 species of weeds in 18 genera are presently known to have developed resistance to triazine herbicides. Resistance of weed biotypes to triazine herbicide is not mainly due to limited absorption and translocation or to the difference in metabolism, but is the result of biochemical changes at the site of metabolic activity, such as a loss of herbicide affinity for triazine binding site in the photosystem II complex of the chloroplast membrane. Genetical study showed that plastid resistance to triazine was wholly inherited through cytoplasmic DNA in the case of Brassica campestris. Plant tissue culture method can be utilized as an alternate mean of herbicide screening and development of resistance variants to herbicides as suggested by Chaleff and Parsons. In this purpose, one should be certain that the primary target process is operational in cell culture. Further, there are a variety of obstacles in doing this type of research, particularly development of resistance source and it's regeneration because cultured cells and whole plants represent different developmental state.

  • PDF

애기장대 H+-PPase(AVP1) 과발현 배추에서 바이오매스 증가와 내염성 향상 (Increased biomass and enhanced tolerance to salt stress in Chinese cabbage overexpressing Arabidopsis H+-PPase (AVP1))

  • 박미희;원희연;김창길;한증술
    • Journal of Plant Biotechnology
    • /
    • 제39권4호
    • /
    • pp.253-260
    • /
    • 2012
  • 애기장대 액포 소재 $H^+$-PPase(AVP1)의 과발현이 농업적으로 가치 있는 표현형을 나타낸다는 기 보고에 기초하여, AVP1 발현이 다른 종에서도 일관되게 바이오매스를 증가시키고 염에 대한 내성을 향상시키는지를 확인하기 위하여 본 연구에서는 AVP1 형질전환 배추 식물체를 획득한 후 고정계통을 육성하여 생리검정 재료로 사용하였다. 형질전환 배추 유식물체는 비형질전환 유식물체에 비해 생장이 왕성하였으며 염스트레스에 대한 내성도 강하였다. 정상 재배조건에서 생장시킨 유식물체의 생체중과 건물중을 비교함으로써 형질전환에 의한 바이오매스증가 표현형을 확인하였으며 MS 염과 NaCl로 점차 염스트레스를 강화시키는 조건에서 광계II 양자수율을 추적, DAB 염색 실시 및 최종적으로 용토 탈염 후 회복 실험을 수행함으로써 내염성 향상 표현형을 확인하였다.

인삼 틸라코이드에서 Singlet Oxygen($^1$O$_2$) 생성에 미치는 전자전달계의 영향 (Effects of Light and Photosynthetic Electron Transport System on the Generation of Singlet Oxygen ($^1$O$_2$) in Ginseng Thylakoid Membrane)

  • 양덕조;채쾌;이성종;김용해;강영희
    • Journal of Ginseng Research
    • /
    • 제14권1호
    • /
    • pp.57-62
    • /
    • 1990
  • In order to Investigate the mechanism of the leaf-burning disease of ginseng (Panax ginseng C.A. Meyer), studies on the generation of singlet oxygen (1O2) and the photooxidation of the pigments were carried out in comparison with the ones of soybean (G1ycine max L). The studies were mainly focalized on the effects of light intensity, light intensity, inhibitor and electron donor/acceptor of the Photosynthetic electron transport system. When we measured the amounts of 1O2 generated in the thylakoids of ginseng and soybean by the irradiation of light (300 w/m2) as a function its time. It was identified that a higher amount of 1O2 was formed in the ginseng thylakoid than the case of soybean. A generation ratio of lO2 between ginseng and soybean sltbstantially identical in the range of light intensities 50∼150w/m2 However much higher amount of 1O2 was generated in ginseng by irradiation of strong intensity of light (200 500w/m2). Wave length dependency on the generation of 1O2 and the pigment photooxidation was observed on ginseng thylakoids; red light (600-700 nm) gave a maximum effect in the contrast with blur green light (400-60 nm). When the ginseng thylalioid was treated with the electron donor (Mn2+) and acceptors (DCPIP, FeCy) of the photosynthetic electron transport system. a drastic inhibition of 1O2 generation was observed. However, treatment with its inhibitors (DCMU, KCW) activated 1O2 generation. An interesting fact that an electron donor or acceptor of the photosystem II(P680) Inhibited 1O2 generation, suggests an intimate relationship between 1O2 generation and photosystem II.

  • PDF

호염기성 미세조류 Arthrospira platensis의 폐수처리 적용을 위한 종특이성 평가 (Species Specificity Evaluation for Wastewater Treatment Application of Alkaliphilic Microalgae Arthrospira platensis)

  • 이수현;허재희;황선진
    • 한국물환경학회지
    • /
    • 제38권6호
    • /
    • pp.282-291
    • /
    • 2022
  • Since the efficiency of wastewater treatment using microalgae differs depending on the metabolic characteristics of the species, it is important to understand the characteristics of target algae prior to the application in wastewater treatment. In this study, for the application of Arthrospira platensis to wastewater treatment, which is a filamentous alkaliphilic cyanobacteria, basic species specificity was identified and the possibility of application to wastewater treatment was investigated. As a result of the species specificity investigation, the specific growth rate between pH 7.0 and 11.0 showed the highest value near pH 9 at 0.25/day. The reason for the relatively low growth(0.08/day) at pH 11 was thought to be the CA(carbonic anhydrase) enzyme that is involved in carbon fixation during photosynthesis has the highest activity at pH 8.0 to 9.0, and at pH 11, CA activity was relatively low. In addition, A. platensis showed optimal growth at 400 PPFD(photosynthetic photon flux density) and 30℃, and this means that cyanobacteria such as A. platensis have a larger number of PS-I(photosystem I) than that of PS-II(photosystem II). It was speculated that it was because higher light intensity and temperature were required to sufficiently generate electrons to transfer to PS-I. Regarding the applicability of A. platensis, it was suggested that if a system using the synergistic effect of co-culture of A. platensis and bacteria was developed, a more efficient system would be possible. And different from single cocci, filamentous A. platensis expected to have a positive impact on harvesting, which is very important in the latter part of the wastewater treatment process.