• Title/Summary/Keyword: photosystem

Search Result 185, Processing Time 0.026 seconds

Inactivation of Photosystem I in Cucumber Leaves Exposed to Paraquat-Induced Oxidative Stress

  • Park, Sun-Mi;Suh, Key-Hong;Kim, Jae-sung;Park, Youn-Il
    • Journal of Photoscience
    • /
    • v.8 no.1
    • /
    • pp.13-17
    • /
    • 2001
  • Cucumber leaves subjected to light chilling stress exhibit a preferential inactivation of photosystem(PS) I relative to PSII, resulting in the photoinhibition of photosynthesis. In light chilled cucumber leaves, Cu/Zn-Superoxide dismutase(SOD) is regarded as a primary target of the light chilling stress and its inactivation is closely related to the increased production of reactive oxygen species. In the present study, we further explored that inactivation of PSI in cucumber leaves is not a light chilling specific, but general to various oxidative stresses. Oxidative stress in cucumber leaves was induced by treatment of methylviologen(MV), a producer of reactive oxygen species in chloroplasts. MV treatment decreased the maximal photosynthetic O$_2$ evolution, resulting in the photoinhibition of photosynthesis. The photoinhibition of photosynthesis was attributable to the decline in PSI functionality determined in vivo by monitoring absorption changes around 820 nm. In addition, MV treatment inactivated both antioxidant enzymes Cu-Zn-superoxide dismutase and ascorbate peroxidase known sensitive to reactive oxygen species. From these results, we suggest that chloroplast antioxidant enzymes are the primary targets of photooxidative stress, followed by subsequent inactivation of PSI.

  • PDF

Mobilization of Photosystem II-Light Harvesting Complex II Supercomplexes during High Light Illumination and State Transitions

  • Nath, Krishna;Elizabeth, John;Poudyal, Roshan Sharma;Ko, Su Yeon;Lim, Woon Ki;Lee, Choon-Hwan
    • Rapid Communication in Photoscience
    • /
    • v.2 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • The photosystem II (PSII) light harvesting complex (LHC) consists of a variety of pigment protein complexes which are involved in structural organization and regulation of photosynthetic unit. These LHC proteins encoded by a group of Lhcb genes are essential for the structural integrity of PSII supercomplex, the channeling the excitation energy to the reaction center of PSII and its redistribution to photosystem I by state transitions. Numerous studies with the help of recent technological advancements have enabled a significant progress in our understanding on the structure of PSII-LHCII supercomplexes and their mobilization under various light conditions. Here, we present a mini-review on the latest concepts and models depicting the structure of PSII-LHCII supercomplexes and the role of Lhcb proteins in their supra-molecular organization. Also we will review on the current understandings and remaining problems involved in the mobilization of the supercomplexes during state transitions and during high light illumination for controlling light energy distribution between the two photosystems.

The Relationships between Weather Factors and Photosystem II Activity in Three Cool-season Turfgrasses in Summer (한지형 잔디 3종의 하절기 광계II 활성과 기상요인과의 상관성)

  • Koh, Seok Chan
    • Journal of Environmental Science International
    • /
    • v.31 no.4
    • /
    • pp.311-318
    • /
    • 2022
  • In this study, we analyzed the relationships between weather factors and photosystem II activity (Fv/Fm), as a measure of photochemical efficiency, in three cool-season turfgrasses commonly planted on golf courses in Jeju, South Korea: perennial ryegrass (Lolium perenne L.), Kentucky bluegrass (Poa pratensis L.), and creeping bentgrass (Agrostis palustris Huds.). In all three turfgrasses, Fv/Fm was higher during late summer than during early summer. However, in late summer, Fv/Fm was significantly lower in perennial ryegrass than in the other two species. In early summer, Fv/Fm in perennial ryegrass and Kentucky bluegrass was positively correlated with mean low temperature and extreme minimum temperature, whereas, in late summer, this parameter in Kentucky bluegrass and creeping bentgrass was positively correlated with relative humidity, and in creeping bentgrass was negatively correlated with mean high temperature, mean low temperature, and extreme maximum temperature. These results indicate that raising low temperatures is favorable for perennial ryegrass and Kentucky bluegrass in early summer, whereas, in late summer, the lowering of high temperatures proves to be beneficial for creeping bentgrass, and raising relative humidity is conducive to the growth of Kentucky bluegrass and creeping bentgrass. These findings will contribute to improving the selection and management of turfgrasses on golf courses and sports fields.

Evaluation of Street Tree Rootage by Transplanting Methods - Photochemical Response Analysis of Different Cultivation for Sorbus alnifolia - (가로수의 이식방법에 따른 수목 활착 평가 - 재배방법별 팥배나무의 광화학적 반응 해석 -)

  • Yoo, Sung Young;Park, So Hyun;Park, Chung In;Kim, Tae Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.1
    • /
    • pp.132-138
    • /
    • 2015
  • Trees, cultivated in containers, are appropriate in soil deformation such as road sites with cutting and filling. This study tested the effectiveness of trees produced in containers for early rootage in street tree transplantation. For the study, Korean Mountain Ashes(Sorbus alnifolia) were used for experimental groups. The groups were categorized into three categories: trees cultivated in containers with mulching treatment(group A), trees cultivated outdoors with mulching treatment (group B), and trees cultivated in containers with weeding treatment(group C). Each group consisted of ten trees of the same size and transplanted to the experimental site. In order to compare each group's rootage, the study was carried out with the chlorophyll fluorescence method by the analysis of photochemical reaction. As a result of the study, group B had the lowest the maximum fluorescence amount(P). The amount of fluorescence increased by OJ transition of the process, and appeared to reduce the photosystem II electron transport efficiency. In photosystem II, electron transfer energy flux through photosystem I(RE1o/RC, RE1o/CS) was also reduced by more than 20% in group B. These results may imply that transplantation of container-cultivated trees with mulching treatment provides the most rapid rootage among the groups. The weeding treatment is also more effective than mulching treatment for rapid rootage of street trees.

Studies on The Molecular Mechanism of 33 kDa extrinsic Protein in Photosystem II Oxygen-Evolving Complex

  • Xu, Chunhe;Ruan, Kangcheng;Yu, Yong;Weng, Jun
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.82-85
    • /
    • 2002
  • 33kDa extrinsic protein, an important protein in oxygenic photosynthesis, was known to have no fixed configuration in solution. At 20$\^{C}$ and pH 6, 33kDa extrinsic protein showed changes of free energy of -14.6 kJ/mor$\^$-1/ and of standard volume of -120mL/mol, respectively, with increase of hydrostatic pressure, comparatively lower than for most proteins. NBS modification of Trp241 in 33kDa extrinsic protein dramatically changes the secondary protein structure, its affinity to photosystem II as well as photosynthetic oxygen evolution. The relationship between structural change and transport of oxygen, water and proton is deserved a further study.

  • PDF