• 제목/요약/키워드: photosynthetic responses

검색결과 181건 처리시간 0.022초

피음처리를 실시한 3개 활엽수종의 광합성과 생장 특성 (Photosynthetic Responses and Growth Performances in the Three Deciduous Hardwood Species Under Different Shade Treatments)

  • 조민석;권기원;최정호
    • 한국산림과학회지
    • /
    • 제96권4호
    • /
    • pp.462-469
    • /
    • 2007
  • 본 연구는 인위적인 피음처리 수준을 4단계(상대 투광율; 100%, 54~65%, 26~37%, 8~13%)로 조절한 생육환경 하에서 생장시킨 튜울립나무, 거제수나무, 까치박달나무를 대상으로 광합성과 생장 특성을 조사 비교하였다. 튜울립나무와 거제수나무의 광합성률은 전광 처리구에서 13.59, $16.29{\mu}mol\;CO_2{\cdot}m^{-2}{\cdot}s^{-1}$로서 가장 높게 나타났으며 피음처리 수준이 높아질수록 낮은 광합성 능력, 생장 및 물질생산량을 보였다. 까치박달나무는 보통피음 처리구(26~37%)에서 광합성률이 $9.47{\mu}mol\;CO_2{\cdot}m^{-2}{\cdot}s^{-1}$으로 가장 높았으며, 생장과 물질생산량도 가장 많았다.

토양 납 오염에 대한 가로수 식물종의 생리생태적 반응 (Eco-physiological Responses of Roadside Tree Species to Contamination of Soil with Lead)

  • 김한얼;송우람
    • Ecology and Resilient Infrastructure
    • /
    • 제2권3호
    • /
    • pp.237-246
    • /
    • 2015
  • 대한민국은 도시화 과정과 인접 국가에서부터 대기를 통한 유입 등으로 납과 같은 중금속의 토양 오염 문제가 관심을 받고 있다. 이에 가로수 수종으로 많이 쓰이고 있는 자생종 4종을 대상으로 토양 내 납 오염에 대한 엽록소 함량, 항산화 효소, 광합성량, 생물량과 같은 생리-생태적인 반응과 흡수능력을 연구하여 납 오염에 대응하는 가로수로 적합한 수종을 제시하고자 하였다. 연구 대상종인 은행나무, 왕벚나무, 느티나무, 이팝나무는 200 mg Pb/kg 이상의 처리구에서 엽록소 함량, 항산화 효소에서 납 독성에 대한 반응을 보였다. 반면에 생물량이나 광합성량의 경우 고농도 (5,000 mg/kg)를 제외하고는 큰 차이를 나타내지 않았다. 특히 은행나무는 항산화 효소, 광합성 및 생물량에서 고농도에서도 납의 부정적인 영향이 나타내지 않았다. 실제 환경에서 나타날 수 있는 저농도 처리구에서 은행나무와 벚나무의 경우 연구 대상종 중 높은 납 흡수율을 보였다. 이처럼 은행나무와 같이 납에 대한 저항력과 흡수능력을 가진 수종을 선발하여 가로수로 식재하여 도로 주변 납 오염에 대응하는 방안이 필요할 것이다.

Label-free quantitative proteomic analysis of Panax ginseng leaves upon exposure to heat stress

  • Kim, So Wun;Gupta, Ravi;Min, Cheol Woo;Lee, Seo Hyun;Cheon, Ye Eun;Meng, Qing Feng;Jang, Jeong Woo;Hong, Chi Eun;Lee, Ji Yoon;Jo, Ick Hyun;Kim, Sun Tae
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.143-153
    • /
    • 2019
  • Background: Ginseng is one of the well-known medicinal plants, exhibiting diverse medicinal effects. Its roots possess anticancer and antiaging properties and are being used in the medical systems of East Asian countries. It is grown in low-light and low-temperature conditions, and its growth is strongly inhibited at temperatures above $25^{\circ}C$. However, the molecular responses of ginseng to heat stress are currently poorly understood, especially at the protein level. Methods: We used a shotgun proteomics approach to investigate the effect of heat stress on ginseng leaves. We monitored their photosynthetic efficiency to confirm physiological responses to a high-temperature stress. Results: The results showed a reduction in photosynthetic efficiency on heat treatment ($35^{\circ}C$) starting at 48 h. Label-free quantitative proteome analysis led to the identification of 3,332 proteins, of which 847 were differentially modulated in response to heat stress. The MapMan analysis showed that the proteins with increased abundance were mainly associated with antioxidant and translation-regulating activities, whereas the proteins related to the receptor and structural-binding activities exhibited decreased abundance. Several other proteins including chaperones, G-proteins, calcium-signaling proteins, transcription factors, and transfer/carrier proteins were specifically downregulated. Conclusion: These results increase our understanding of heat stress responses in the leaves of ginseng at the protein level, for the first time providing a resource for the scientific community.

Direct Triazine Herbicide Detection Using a Self-Assembled Photosynthetic Reaction Center from Purple Bacterium

  • Nakamura, Chikashi;Hasegawa, Miki;Shimada, Kazumi;Shirai, Makoto;Miyake, Jun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권6호
    • /
    • pp.413-417
    • /
    • 2000
  • In this study, a direct detection system for triazine derivative herbicides was developed using the photosynthetic reaction center (RC) from the purple bacterium, Rhodobacter sphaeroides, and surface plasmon resonance (SPR) apparatus. The histidine-tagged RCs were immobilized on an SPR gold chip using nickel-nitrilotriacetic acid groups as a binder for one of the triazine herbicide, atrazine. The SPR responses were proportional to the sample concentrations of atrazine in the range 0.1-1 $\mu\textrm{g}$/mL. The sensitivity of the direct detection of atrazine using the RC-assembled sensor chip was higher than that using the antibody-immobilized chip. The other types of herbicides, DCMU or MCPP, were not detected with such high sensitivity. The results indicated the high binding selectivity of the RC complex.

  • PDF

The effects of LEDs and duty ratio on the growth and physiological responses of Silene capitata Kom., endangered plant, in a plant factory

  • Park, Jae-Hoon;Lee, Eung-Pill;Han, Young-Sub;Lee, Soo-In;Cho, Kyu-Tae;Hong, Yong-Sik;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • 제42권4호
    • /
    • pp.174-182
    • /
    • 2018
  • Background: In this study, we observed their growth and physiological responses using a variety of duty ratio under the mixed light using red, blue, and white lights. The red+blue mixed light was treated with 95%, 90%, 85%, 80%, and 75% duty ratios and red+blue+white mixed light with 85% and 70% duty ratios. We examined the width and length of leaves, total number of leaves, and number of shoots to examine their growth responses. The physiological responses were studied by measuring their photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, chlorophyll content, and fluorescence ($F_o$, $F_m$, and $F_v/F_m$). Results: We found that lower duty ratio caused the length and width of the leaves to grow longer under red+blue mixed light but that it did not cause any difference in the red+blue+white mixed light condition. In addition, there was no difference in the number of leaves and shoots among all treatments. In the red+blue mixed light condition, the photosynthetic rate was no difference, but both transpiration rate and stomatal conductance were the highest at 95% duty ratio than in other ratios. Water use efficiency pattern was similar to that of photosynthetic rate; water use efficiency was no difference. Chlorophyll content was the highest at 95% duty ratios, and it was the least at 90%, 85%, and 75% duty ratio. $F_o$ and $F_m$ values were relatively high at 85% and 80% duty ratio and low at 90% duty ratio while $F_v/F_m$ showed no difference. Conclusions: Under the red+blue+white mixed light, all physiological items showed no difference between 70 and 85% treatments. But, photosynthetic rate, water use efficiency, chlorophyll content, and $F_v/F_m$ were relatively greater in the red+blue+white mixed light than in the red+blue mixed light. Therefore, red+blue+white mixed light treated with 70% duty ratio could lessen the environmental stress and save more power when cultivating Silene capitata in a plant factory.

건조 스트레스에 따른 황칠나무 유묘의 광합성과 수분특성인자 변화 (Changes in Photosynthetic Performance and Water Relation Parameters in the Seedlings of Korean Dendropanax Subjected to Drought Stress)

  • 이경철
    • 한국약용작물학회지
    • /
    • 제26권2호
    • /
    • pp.181-187
    • /
    • 2018
  • Background: This study aimed to investigate out the influence of drought stress on the physiological responses of Dendropanax morbifera seedlings. Methods and Results: Drought stress was induced by discontinuing water supply for 30 days. Under drought stress, photosynthetic activity was significantly reduced with decreasing soil water content (SWC), as revealed by the parameters such as Fv/Fm, maximum photosynthetic rate ($P_{N\;max}$), stomatal conductance ($g_s$), stomatal transpiration rate (E), and intercellular $CO_2$ concentration (Ci). However, water use efficiency (WUE) was increased by 2.5 times because of the decrease in $g_s$ to reduce transpiration. Particularly, E and $g_s$ were remarkably decreased when water was withheld for 21 days at 6.2% of SWC. Dendropanax morbifera leaves showed osmotic adjustment of -0.30 MPa at full turgor and -0.13 MPa at zero turgor. In contrast, the maximum bulk modulus of elasticity ($E_{max}$) did not change significantly. Thus, Dendropanax morbifera seedlings could tolerate drought stress via osmotic adjustment. Conclusions: Drought avoidance mechanisms of D. morbifera involve reduction in water loss from plants, through the control of stomatal transpiration, and reduction in cellular osmotic potential. Notably photosynthetic activity was remarkably reduced, to approximately 6% of the SWC.

A Model for Predicting the Effect of Increasing Air Temperature on the Net Photosynthetic Rate of Quercus mongolica Stands

  • Ihm, Byung-Sun;Lee, Jeom-Sook;Kim, Jong-Wook;Kim, Joon-Ho
    • Journal of Ecology and Environment
    • /
    • 제30권1호
    • /
    • pp.1-7
    • /
    • 2007
  • A model was developed to predict the effects of rising air temperature on net photosynthetic rate of Quercus mongolica stands at Mt. Paekcheok-san, Kangwon-do in South Korea. The PFD (Photon flux density) and air temperature were determined from weather data from the research site and the Daegwallyeong meteorological station and gas exchange or release responses of each tree component were measured. Using these data, we simulated the effects of increases in mean annual air temperatures above current conditions on annual $CO_2$ budget of Q. mongolica stands. If mean annual air temperature is increased by 0.5, 1.0, 1.5, 2.0, 2.5 or $3.0^{\circ}C$, annual net photosynthetic rate will be increased by 8.8, 12.8, 14.5, 12.6, 9.2 and 1.0 ton $CO_2\;ha^{-1}yr^{-1}$ respectively. Simulations indicate that changes in air temperature will have a major impact on gas exchange and release in Q. mongolica stands, resulting in a net increase in the rate of carbon fixation by standing crops.

다도해 해상 국립공원 상록활엽수의 수분상태와 광합성능 (Water Status and Photosynthetic Activities of Evergreen Broad-leaved Trees in Dadohae National Marine Park)

  • Ihm, Byung-Sun;Gae-Hong Suh;Jeom-Sook Lee
    • The Korean Journal of Ecology
    • /
    • 제16권3호
    • /
    • pp.353-364
    • /
    • 1993
  • To elucidate ecophysiological factors affecting nutural distribution of evergreen broad-leabed trees in Danohad National Marine Park, water potential, relative water content and photosynthetic activities of 4 species, Cammellia japonica, Machilus thunbergii, Castanopsis cuspidata var.sieboldii and Quercus acuta, were potential began to decrease from 07:00h to its minimum value at 13:00h for C. cuspidata var. sieboldii (-14.3bar) and Q. acuta (-19.4bar) at 16:00 h for M. thunbergii(-17.0bar) and at 19:00 h for C. japonica (-14.5bar), and these showed similar trends to relative water content. Photosynthetic activities of 4 species began to increase from 7:00 h and reached maximum values before their minimum values of water potential occureed. Optimum temperature renges of photosynthetic activities was $18~20^{\circ}C$ for C. japonica - M. thunbergii and $14~16^{\circ}C$ for C. cuspidata var. sieboldii Quercus acuta.Q.acuta had the highest light saturation point of $0.4mM/m^2/s$ and C. japonica the lowest of $0.15mM/m^2/s$. Water potential of 4 species subjected to water stress, began to decrease after 1st day of drought and after 21th day of drought, those of C. japonica, M. thunbergii, C. cuspidata var. sieboldii and Q. acuta decreased to species began to decrease after 7th day of drought and after 21th day, those of M. thunbergii, C. cuspidata var. sieboldii and Q. acuta were dropped to about 50% and C. japonica 83.5%. Photosynthetic activity of 4 specie began to decline in the order of C. cuspidata var. sieboldii, Q.acuta, C. japonica and M. thunbergii after 10th day of drought. These results suggest that the segregated disributions of C. japonica - M. thunbergii on vally positions and C. cuspidata var. sieboldii - Q. acuta on slopes were associated with different responses of water status and photosyntheties to their environment.

  • PDF

대기 중 CO2 상승 조건에서 재배되는 콩의 광합성과 생장 반응의 분석 (Photosynthesis and Growth Responses of Soybean (Glycine max Merr.) under Elevated CO2 Conditions)

  • 오순자;고석찬
    • 한국환경과학회지
    • /
    • 제26권5호
    • /
    • pp.601-608
    • /
    • 2017
  • The effects of elevated atmospheric $CO_2$ on growth and photosynthesis of soybean (Glycine max Merr.) were investigated to predict its productivity under elevated $CO_2$ levels in the future. Soybean grown for 6 weeks showed significant increase in vegetative growth, based on plant height, leaf characteristics (area, length, and width), and the SPAD-502 chlorophyll meter value (SPAD value) under elevated $CO_2$ conditions ($800{\mu}mol/mol$) compared to ambient $CO_2$ conditions ($400{\mu}mol/mol$). Under elevated $CO_2$ conditions, the photosynthetic rate (A) increased although photosystem II (PS II) photochemical activity ($F_v/F_m$) decreased. The maximum photosynthetic rate ($A_{max}$) was higher under elevated $CO_2$ conditions than under ambient $CO_2$ conditions, whereas the maximum electron transport rate ($J_{max}$) was lower under elevated $CO_2$ conditions compared to ambient $CO_2$ conditions. The optimal temperature for photosynthesis shifted significantly by approximately $3^{\circ}C$ under the elevated $CO_2$ conditions. With the increase in temperature, the photosynthetic rate increased below the optimal temperature (approximately $30^{\circ}C$) and decreased above the optimal temperature, whereas the dark respiration rate ($R_d$) increased continuously regardless of the optimal temperature. The difference in photosynthetic rate between ambient and elevated $CO_2$ conditions was greatest near the optimal temperature. These results indicate that future increases in $CO_2$ will increase productivity by increasing the photosynthetic rate, although it may cause damage to the PS II reaction center as suggested by decreases in $F_v/F_m$, in soybean.

스마트 팜에서의 광 특성에 따른 인삼의 광합성률 변화 (Changes in Photosynthetic Rate of Ginseng under Light Optical Properties in Smart Farms)

  • 이정민;박재훈;이응필;김의주;박지원;유영한
    • 생태와환경
    • /
    • 제53권3호
    • /
    • pp.304-310
    • /
    • 2020
  • Smart farm is a high-tech type of plant factory that artificially makes environmental conditions suitable for the growth of plants and manages them to automatically produce the desired plants regardless of seasons or space. This study was conducted by identifying the effects of Hertz and Duty ratio on the photosynthetic rate of ginseng, a medicinal crop, to find the optimal conditions for photosynthetic responses in smart farms. The light sources consisted of a total of 10 chambers using LED system, with 4 R+B(red+blue) mixed lights and 6 R+B+W (red+blue+white) mixed lights. In addition, the Hertz of the R+B mixed light was treated at 20, 60, 180, 540, 1620 and 4860 hz respectively. The R+B+W mixed light was treated with 60, 180, 540, and 1620 hz. Afterwards, experiments were conducted with the duty ratio of 30, 50, and 70%. As a result, the photosynthetic rate of ginseng according to duty ratio and Hertz was the highest at 60 hz when duty ratio was set to 50%. On the other hand, that was the lowest when the duty ratio was 30% at the same 60 hz. In addition, the photosynthetic rates were highest in the R+B mixed light and R+B+W mixed light at 60 hz. Therefore, the condition with the highest photosynthetic rate of ginseng in smart farms is 60 hz when the duty ratio in R+B mixed light is 50%.