• Title/Summary/Keyword: photosynthetic efficiency

Search Result 271, Processing Time 0.026 seconds

Ozone Sensitivity of Physiological Indicators for Stress Evaluation in Four Families of Quercus aliena Blume (갈참나무 4가계에서 스트레스 평가용 생리 지표들의 오존 민감성)

  • Kim, Du-Hyun;Han, Sim-Hee;Lee, Jae-Cheon
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.878-884
    • /
    • 2010
  • Ozone sensitivity of physiological indicators and the difference of ozone tolerance on 4 families of Quercus aliena seedlings were investigated on the basis of the standardized physiological indicators. Photosynthetic parameters, photosynthetic pigment and malondialdehyde (MDA) content, and antioxidative enzyme activities were measured or analyzed from the leaves of Q. aliena seedlings at the end of ozone fumigation, and ozone tolerance indices among 4 families were calculated with the standardized physiological parameters. After ozone treatment, the reduction of carboxylation efficiency was observed in the leaves of four families, and their reduction were ranged from -24.1% to -56.9% of control seedlings. Photosynthetic pigment content differed significantly among 4 families and treatments. The reduction of total chlorophyll content showed the highest in family SU4 (-40.6%) and the lowest family US2 (-18.8%). Ascorbate-peroxidase (APX) activity showed significant difference among families and treatments, and increased as compared with control in three families, except for family US2. On the basis of the physiological indices, ozone tolerance of four families was ranked in the order of US1 > SU4 > US2 > SU1. In conclusion, photosynthetic parameters, pigment content and APX activity were recommended as appropriate indicators to assess the tolerance against ozone stress of Q. aliena.

Selecting Appropriate Seedling Age for Restoration Using Comparative Analysis of Physiological Characteristics by Age in Abies koreana Wilson

  • Seo, Han-Na;Chae, Seung-Beom;Lim, Hyo-In;Han, Sim-Hee;Lee, Kiwoong
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.4
    • /
    • pp.315-322
    • /
    • 2021
  • The aim of this study was to investigate the sensitivity to environmental stress, and changes in the photosynthesis capacity in Abies koreana seedlings by age and to suggest the most effective age for restoration. To identify these physiological characteristics of A. koreana, the chlorophyll fluorescence and photosynthetic capacity of 1-, 2-, 3-, 5- and 6-year-old A. koreana seedlings were observed from June 2020 to June 2021. The maximum quantum efficiency of Photosystem II (Fv/Fm), a chlorophyll fluorescence measurement parameter, was strongly positively correlated with the monthly average temperature (1-year-old seedling: r=0.8779, 2-year-old seedling: r=0.8605, 3-year-old seedling: r=0.8697, 5-year-old seedlings: r=0.8085, and 6-year-old seedlings: r=0.8316). The Fv/Fm values were the lowest in winter (November 2020-March 2021). In addition, the Fv/Fm values of 1-, 2-, and 3-year-old seedlings in winter were lower than that of 5- and 6-year-old seedlings, while the Fv/Fm values in summer were relatively higher than those in winter. Further, the Fv/Fm values of seedlings of all ages decreased in August 2020, when the monthly average temperature was the highest. In particular, 1-year-old to 3-year-old seedlings showed Fv/Fm values less than 0.8. Further, the photosynthetic capacity measured in August 2020 increased with increasing seedling age. The analysis of variance results for summer Fv/Fm values showed significant differences in age-specific averages (p<0.05), and Duncan's multiple range test showed significant differences between 5- and 6-year-old seedlings and 1-, 2-, and 3-year-old seedlings (p<0.05). These results suggested that the 5- and 6-year-old seedlings were less sensitive to environmental stress and showed better photosynthetic capacity than the 1-, 2-, and 3-year-old seedlings. Therefore, 5-year-old or older A. koreana seedlings can be used as restoration materials because they can show increased adaptability and stable growth during transplantation due to their relatively high environmental resistance and photosynthetic capacity.

Effect of Experimental Warming on Physiological and Growth Responses of Larix kaempferi Seedlings (실외 온난화 처리에 따른 낙엽송 묘목의 생리 및 생장 반응)

  • An, Jiae;Chang, Hanna;Park, Min Ji;Han, Seung Hyun;Hwang, Jaehong;Cho, Min Seok;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.77-84
    • /
    • 2016
  • Seedling stage is particularly important for tree survival and is easily influenced by warming. Therefore, air temperature being increased due to climate change may affect physiological traits and growth of seedlings. This study was conducted to investigate the physiological and growth responses of Larix kaempferi seedlings to open-field experimental warming. 1-year-old and 2-year-old L. kaempferi seedlings were warmed with infrared lamps since April 2015 and April 2014, respectively. The seedlings in the warmed plots were warmed to maintain the air temperature to be $3^{\circ}C$ higher than that of the control plots. Physiological responses (stomatal conductance, transpiration rate, net photosynthetic rate and total chlorophyll content) and growth responses (root collar diameter (RCD), height and biomass) to experimental warming were measured. Physiological and growth responses varied with the seedling ages. For 2-year-old L. kaempferi seedlings, stomatal conductance, transpiration rate and net photosynthetic rate decreased following the warming treatment, whereas there were no changes for 1-year-old L. kaempferi seedlings. Meanwhile, total chlorophyll content was higher in warmed plots regardless of the seedling ages. Net photosynthetic rate linked with stomatal conductance also decreased due to the drought stress and decrease of photosynthetic efficiency. In response to warming, RCD, height and biomass did not show significant differences between the treatments. It seems that the growth responses were not affected as much as physiological responses were, since the physiological responses were not consistent, nor the warming treatment period was enough to have significant results. In addition, multifactorial experiments considering the impact of decreased soil moisture resulting from elevated temperatures is needed to explicate the impacts of a wide range of possible climate change scenarios.

The Study on Nitrogen and Phosphorus Removal Using Photosynthetic Bacteria in SBR Process (광합성 미생물을 이용한 SBR공법에서의 질소, 인 동시제거에 관한 연구)

  • Kim Yung-Ho;Kim Sung-Chul;Lee Kwang-Hyun;Joo Hyun-Jong
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.2 s.56
    • /
    • pp.12-20
    • /
    • 2005
  • Most of sewage treatment plants in Korea is operated for the removal of organic material. Because of low C/N ratio of domestic wastewater it is very difficult to remove nitrogen and phosphorus from wastewater. Therefore C/N ratio is key factor for the removed of nitrogen and phosphorus. PSB(photosynthetic bacteria) can remove the nutrient materials, so this study is focused on PSB characterization of nutrient removal. PSB is possible to remove nitrogen, phosphorus in anaerobic and aerobic condition. This study try to find out condition of the PSB in SBR reactor, Batch reactor. It consists of three Mode. Mode 1, 2 is to apply activated sludge process and Mode 3 is that seeded PSB in the activated sludge process. As a result of SBR process, Mode 1, 2 which was activated sludge Process showed $79\~90\%,\;66\~90\%$ of SCODcr, $94.67\~95.89\%,\;95.76\~98.56\%$ of TKN, and Mode 3 has $84\~92\%$ of SCODcr, $95.39\~99.52\%$ of TKN removal efficiency, respectively. When comparison with Mode 1, 2 and 3, most of nitrogen and phosphorus is removed at the anaerobic condition in Mode 3. but Mode 1, 2 has just revealed activated sludge process characterization. It would because of characterization of PSB.

Effects of Six Antibiotics on the Activity of the Photosynthetic Apparatus and Ammonium Uptake of Thallus of Porphyra yezoensis

  • Oh, Min-Hyuk;Kang, Yun-Hee;Lee, Choon-Hwan;Chung, Ik-Kyo
    • ALGAE
    • /
    • v.20 no.2
    • /
    • pp.121-125
    • /
    • 2005
  • The modern integrated fish-seaweed mariculture has been tested to reduce the environmental impacts of an intensive fed culture. To obtain the best seaweed bioremediation performance, the effects of therapeutants used for fish disease control on the selected seaweed species should be considered. As a selected seaweed, Porphyra yezoensis was tested with six commercial antibiotics including erythromycin thiocyanate_A, erythromycin thiocyanate_B, oxytetracycline, doxycycline, pefloxacin, and amoxicillin trihydrate under the batch incubation at a photon flux density of 10 $\mu$mol ${\cdot}m^{-2}\;{\cdot}\;s^{-1}$ at 15$^{\circ}C$. Among the tested commercial antibiotics, erythromycin thiocyanate_A, erythromycin thiocyanate_B, oxytetracycline, and doxycycline showed decreases in Fv/Fm, the photochemical efficiency of photosystem II, with a dose-dependant and time-dependant manner. From the quenching analysis of chlorophyll fluorescence, three differential patterns were observed in the antibiotics-treated Porphyra: (1) high nonphotochemical quenching (NPQ) and low photochemical quenching (qP) in the cases of Erythromycin thiocyanate_B and amoxicillin trihydrate, (2) high NPQ and high qP in the case of pefloxacin and (3) low NPQ and low qP in the case of oxytetracycline. These results indicated that antibiotics affected in various ways on the photosynthetic apparatus, reflecting differential lesion sites of antibiotics. In addition, the rates of ammonium uptake also decreased with a decrease of Fv/Fm in P. yezoensis thalli treated with erythromycin thiocyanate_B and oxytetracycline. Therefore, the four antibiotics mentioned could affect the bioremediation capacity of the selected seaweed species in the integrated fish-seaweed mariculture system due to the decrease of photosynthetic activity and the simultaneous decrease of ammonium uptake.

Photosynthetic Response and Protective Regulation To Ultraviolet-B Radiation In Green Pepper (Capsicum annuum L.)Leaves

  • Kim, Dae-Whan;Jun, Sung-Soo;Hong, Young-Nam
    • Journal of Photoscience
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • The deteriorative effect of ultraviolet-B(UV-B) radiation on photosynthesis was assessed by the simultaneous measurement of O$_2$ evolution and chlorophyll(Chl) fluorescence in green pepper. UV-B was given at the intensity of 1 W$.$m$\^$-2/, a dosage often encountered in urban area of Seoul in Korea, to detached leaves. Both Pmax and quantum yield of O$_2$ evolution was rapidly decreased, in a parallel phase, with increasing time of UV-B treatment. Chl fluorescence parameters were also significantly affected. Fo was increased while both Fm and Fv were decreased. Photochemical efficiency of PSII(Fv/Fm) was also declined, although to a lesser extent than Pmax. Both qP and NPQ were decreased similarly with increasing time of UV-B treatment. However, PS I remained stable. The addition of lincomycin prior to UV-B treatment accelerated the decline in Fv/Fm to some extent, suggesting that D1 protein turnover may play a role in overcoming the harmful effect of UV-B. The amount of photosynthetic pigments was less affected than photosynthetic response in showing decline in Chl a and carotenoids after 24 h-treatment. Presumptive flavonoid contents, measured by changes in absorbance at 270 nm , 300 nm and 330nm, were all increased by roughly 50% after 8 h-treatment. Among antioxidant enzymes, activities of catalase and peroxidase were steadily increased until 12h of UV-B treatment whereas ascorbate perxidase, dehydroascorvate reductase and glutathione reductase did not show any significant change. The results indicate that deteriorative effect of UV-B on photosynthesis precedes the protection exerted by pigment synthesis and antioxidant enzymes.

  • PDF

The Effects of Salt Stress on Photosynthetic Electron Transport and Thylakoid Membrane Proteins in the Cyanobacterium Spirulina platensis

  • Sudhir, Putty-Reddy;Pogoryelov, Denys;Kovacs, Laszlo;Garab, Gyozo;Murthy, Sistla D.S.
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.481-485
    • /
    • 2005
  • The response of Spirulina (Arthrospira) platensis to high salt stress was investigated by incubating the cells in light of moderate intensity in the presence of 0.8 M NaCl. NaCl caused a decrease in photosystem II (PSII) mediated oxygen evolution activity and increase in photosystem I (PSI) activity and the amount of P700. Similarly maximal efficiency of PSII (Fv/Fm) and variable fluorescence (Fv/Fo) were also declined in salt-stressed cells. Western blot analysis reveal that the inhibition in PSII activity is due to a 40% loss of a thylakoid membrane protein, known as D1, which is located in PSII reaction center. NaCl treatment of cells also resulted in the alterations of other thylakoid membrane proteins: most prominently, a dramatic diminishment of the 47-kDa chlorophyll protein (CP) and 94-kDa protein, and accumulation of a 17-kDa protein band were observed in SDS-PAGE. The changes in 47-kDa and 94-kDa proteins lead to the decreased energy transfer from light harvesting antenna to PSII, which was accompanied by alterations in the chlorophyll fluorescence emission spectra of whole cells and isolated thylakoids. Therefore we conclude that salt stress has various effects on photosynthetic electron transport activities due to the marked alterations in the composition of thylakoid membrane proteins.

Photosynthetic characteristics and chlorophyll of Vitex rotundifolia in coastal sand dune

  • Byoung-Jun Kim;Sung-Hwan Yim;Young-Seok Sim;Yeon-Sik Choo
    • Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.103-116
    • /
    • 2023
  • Background: This study analyzed the physiological adaptations of a woody plant, Vitex rotundifolia, in Goraebul coastal sand dunes from May to September 2022. Environmental factors and physiological of plants growing under field and controlled (pot) conditions were compared. Results: Photosynthesis in plants growing in the coastal sand dunes and pots was the highest in June 2022 and July 2022, respectively. Chlorophyll fluorescence indicated the presence of stress in the coastal sand dune environment. The net photosynthesis rate (PN) and Y(II) were highest in June in the coastal sand dune environment and July in the pot environment. In August and September, Y(NPQ) increased in the plants in the coastal sand dune environment, showing their photoprotective mechanism. Chlorophyll a and b contents in the pot plant leaves were higher than those in the coastal sand dune plant leaves; however, chlorophyll-a/b ratio was higher in the coastal sand dune plant leaves than in the pot plant leaves, suggesting a relatively high photosynthetic efficiency. Carotenoid content in the coastal sand dune plant leaves was higher in August and September 2022 than that in the pot plant leaves. Leaf water and soluble carbohydrate contents of the coastal sand dune plant leaves decreased in September 2022, leading to rapid leaf abscission. Diurnal variations in photosynthesis and chlorophyll fluorescence in both environments showed peak activity at 12:00 hour; however, the coastal sand dune plants had lower growth rates and Y(II) than the pot plants. Plants in the coastal sand dunes had higher leaf water and ion contents, indicating that they adapted to water stress through osmotic adjustments. However, plants growing in the coastal sand dunes exhibited reduced photosynthetic activity and accelerated decline due to seasonal temperature decreases. These findings demonstrate the adaptation mechanisms of V. rotundifolia to water stress, poor soils, and high temperature conditions in coastal sand dunes. Conclusions: The observed variations indicate the responses of the V. rotundifolia to environmental stress, and may reveal its survival strategies and adaptation mechanisms to stress. The results provide insights into the ecophysiological characteristics of V. rotundifolia and a basis for the conservation and restoration of damaged coastal sand dunes.

Photosynthetic Characteristics and Primary Production by Phytoplankton with Different Water Quality of Influent in Open Waters of Constructed Wetlands for Water Treatment (수질정화용 인공습지 개방수역에서 유입수질에 따른 식물플랑크톤의 광합성특성 및 유기물생산력)

  • Choi, Kwang-Soon;Hwang, Gil-Son;Kim, Dong-Sub;Kim, Sea-Won;Kim, Ho-Joon;Joh, Seong-Ju;Park, Je-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.61-71
    • /
    • 2007
  • The photosynthetic characteristics and primary production by phytoplankton in open waters of two wetlands (the Banwol and the Donghwa wetland) of Sihwa Constructed Wetland with different water chemistry were investigated to provide the information for the wetland management considering the water treatment efficiency. During the study period (from March to October, 2005) the primary productivity in open waters ranged from 481 to 11,275 mgC $m^{-2}$ $day^{-1}$, which is very high compared with the eutrophic level of 600mgC $m^{-2}$ $day^{-1}$. From the analysis of the photosynthesis-irradiance (P-I) model parameters, the photosynthetic characteristics may be affected by different concentration and ratio of nutrient (N and P) between two wetlands. Assimilation number (AN) was higher in the Donghwa wetland (average AN: 8.5gC $gChl^{-1}$ $hr^{-1}$) with high P and low N/P ratio than the Banwol wetland (average AN: 5.8gC $gChl^{-1}$ $hr^{-1}$) with high N and high N/P ratio. This result indicates that AN may be concerned with phosphorus than nitrogen and low NIP ratio. Positive correlation (R=0.81) was observed between the initial slope and AN, implying that AN was high in case of phytoplankton having more active photosynthesis ability under low light. On the other hand, maximum photosynthesis (Pmax) was related positively with chlorophyll a concentration showing correlation coefficient of 0.47. In this study, considering the high primary production through phytoplankton photosynthesis in open waters of Sihwa Constructed Wetland, the produced organic matter by phytoplankton may affect the water quality within wetland and its efficiency of water treatment. Also, the photosynthetic characteristics may be affected by different nutrient enrichment (especially phosphorus) of wetlands. This study suggests that the production by phytoplankton and its characteristics in open water of constructed wetland for water treatment should be considered to improve the removal efficiency of organic matter.

Effect of Calcium Chloride($CaCl_2$) on Chlorophyll Fluorescence Image and Photosynthetic Apparatus in the Leaves of Prunus sargentii (염화칼슘 처리가 산벚나무 엽의 엽록소형광반응과 광합성기구에 미치는 영향)

  • Sung, Joo-Han;Je, Sun-Mi;Kim, Sun-Hee;Kim, Young-Kul
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.922-928
    • /
    • 2010
  • There is a little information on the effect of calcium cloride ($CaCl_2$) which is used as deicing salt in Korea on the physiological responses of the street trees. Prunus sargentii is one of the most widespread tree species of street vegetation in Korea. In this study, the effect of $CaCl_2$ on photosynthetic apparatus such as chlorophyll fluorescence image and light response curve of P. sargentii in relation to their leaf and root collar growth responses were investigated. To study the effect of $CaCl_2$ treatment in the early spring, we irrigated twice in rhizosphere of P. sargentii (3-year-old) planted plastic pots with solution of 0.5%, 1.0%, 3.0% $CaCl_2$ concentration before leaf expansion. Results after treatments, total chlorophyll contents and the chlorophyll a/b, photosynthetic rate, quantum yield, dark respiration decreased with increasing $CaCl_2$ concentration. On the contrary, light compensation point increased with increasing $CaCl_2$ concentration. Through the linear regressions of correlation of photosynthetic rate with photosynthetic parameters (quantum yield, dark respiration and light compensation point), we found a significant relationship (p<0.05) between photosynthetic rate and quantum yield and light compensation point except dark respiration. Calcium cloride ($CaCl_2$) induced inhibition of photochemical efficiency ($F_v/F_M$) and non-photochemical quenching (NPQ) were found in treatments of $CaCl_2$, and these reduction rates between control and CaCl2 treatments were drastically showed at 80 days. We suggest that physiological activities are limited from treatment of $CaCl_2$. These reductions of photosynthetic apparatus ability caused eventually the reduction of leaf and diameter at root collar growth.