• Title/Summary/Keyword: photosynthetic activity

Search Result 331, Processing Time 0.024 seconds

Isolation and Some Cultural Characteristics of ${\delta}-Aminolevulinic$ Acid - Producing Photosynthetic Bacteria (${\delta}-Aminolevulinic$ Acid 생산 광합성세균의 분리 및 배양특성)

  • Cheong, Dae-Yeol;Choi, Yang-Mun;Yang, Han-Chul;Cho, Hong-Yon
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.561-566
    • /
    • 1997
  • Screening, Identification and some cultural characteristics of ALA$({\delta}-aminolevulinic\;acid)$-producing photosynthetic bacteria were carried out for the optimal production of ALA, one of the bioherbicides. Among photosynthetic bacteria isolated from soil, marsh, pond, etc., KK-10 was the best producer of ALA and identified to be Rhodobacter capsulatus belonging to a typical group of nonsulfur purple bacteria. By addition of 15 mM LA (levulinic acid), an inhibitor of ALA dehydrase in cyclic tetrapyrrole biosynthesis, into culture broth at middle log phase of cell growths, ALA production was considerably increased to about 20-fold (28 mg/l). The combined supplementation of glycine and succinate, each with a concentration of 30 mM also enhanced production of ALA and activity of ALA synthase to about 50-fold (73 mg/l) and 2-fold, respectively. The isolated strain was able to produce upto 80 mg/l under the cultural condition optimized by addition 15 mM LA into the synthetic medium at four different points starting middle log phase.

  • PDF

Effect of Simetryne on Chloroplast-Mediated Electron Transport and Photoacoustic Signal (엽록체의 전자전달과 광음향 신호에 미치는 Simetryne의 영향)

  • 김현식
    • Journal of Plant Biology
    • /
    • v.31 no.3
    • /
    • pp.205-215
    • /
    • 1988
  • The effects of simetryne on light induced electron transport and phosphorylation in isolated spinach (Spinacia oleracea L.) chloroplasts were investigated in comparison with sencor and DCMU. Simetryne, like sencor and DCMU, completely, inhibited PSII electron transport and phosphoryltion with 10-6 M treatment but did not inhibit PSI electron transport. Interference with the electron transport pathway was evidenced by the greater sensitivity of oxygen evolution and uptake than phosphorylation. The following order of decreasing inhibitory effectiveness was exihibited; DCMU>simetryne>sencor. The photoacoustic technique was also used to monitor the relative photosynthetic activity in the leaves treated with the herbicides (simetryne, sencor or DCMU) in vivo and in vitro. Photoacoustic measurements on intact leaves provide quantitative information on two related aspects of the photosynthetic process, namely, photochemical energy storage and oxygen evolution. The relative photoacoustic signal of leaves treated with the herbicides showed low level in 21 Hz, but high level in 380 Hz and on isolated chloroplasts (both 21 Hz and 380 Hz) in comparison with that of the untreated leaves. These results suggest that some of photochemical energy is converted into the heat owing to the inhibition of electorn transport pathway by the herbicides.

  • PDF

Effects of Ultraviolet-B Radiation on Growth and Photosynthesis in Sunflower Seedlings

  • Kim, Tae-Yun;Hong, Jung-Hee
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.11a
    • /
    • pp.455-457
    • /
    • 2006
  • The effects of UV-B irradiation on the growth and photosynthetic activity were investigated in seedlings of sunflower(Helianthus annuus L.). The first leaves irradiated with UV-B were retarded in growth but simultaneously acquired a remarkably decreased chlorophyll fluorescence ratio compared with the non-irradiated leaves. The Fv/Fm ratio decreased by 13 % compared to the control after 2 d, and was kept to be lower than the control level until 5 d. From the results it is suggested that UV-B radiation may induce reduced biomass production and decrease in photosynthetic rate in sunflower plants.

  • PDF

Regulation of Growth and Metabolic Activities of Chlorella fusca by Release Products of Some Aquatic Fungi (수생균의 분비물질에 의한 Chlorella fusca의 성장 및 대사조절)

  • Hassan, S.K.M.;Fadl-Allah, E.M.;Kobbia, I.A.;Shoulkamy, M.A.
    • The Korean Journal of Mycology
    • /
    • v.18 no.4
    • /
    • pp.181-190
    • /
    • 1990
  • The growth and biochemical activities of Chlorella fusca were studied in the presence of different concentrations of either filtrates or mycelial mats of Saprolegnia ferax and Pythium graminicola. Low concentrations of both fungal filtrates exerted increase in total count, dry weight and in the biosynthesis of photosynthetic pigments, carbohydrates and nitrogen content. High concentrations showed inhibitory effect on both growth and biochemical activities of Chlorella fusca. Supplementation with different concentrations of dry mycelial mats of either fungi the culture of Chlorella showed elevation in biomass, dry weight, and biosynthesis of carbohydrates and nitrogen content especially at low concentrations. The contents of photosynthetic pigment were inhibited only at low concentrations. Neither the culture filtrate of Pythium nor Saprolegnia had cellulolytic activity, although polygalacturonase enzymes were detected, whereas chloroform-extract of both fungal filtrates showed blue spots under long wave light (366 nm).

  • PDF

Influence of Benzyladenine on in vitro Growth, Chlorophyll and Photosynthetic Enzymes in Tobacco (담배의 기내 생장, 엽록소 및 광합성 효소에 미치는 벤질 아데닌의 영향)

  • Roh Kwang-Soo;Kim Yu-Mi
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.510-515
    • /
    • 2006
  • The influence of $N^6-benzyladenine$ (BA) on in vitro growth, chlorophyll, rubisco and rubisco activase were studied in tobacco. After 11 weeks of treatment of various concentrations of BA, the most pronounced effect on in vitro growth and chlorophyll was found at 2 ${\mu}M$ BA. Rubisco content increased with increasing concentrations of BA, but a point at 2 ${\mu}M$ BA was reached beyond which increasing concentrations of BA cause inhibition of this enzyme. Rubisco activity showed patterns of change similar to rubisco content. These data suggest that rubisco activity was associated with an amount of rubisco protein. Under the assumption that effects of BA on rubisco may be related to by rubisco activase, in addition to, its content and activity were determined. The rubisco activase content at 2 ${\mu}M$ BA was more increased than other treatments. A similar change pattern was also observed in activity of rubisco activase. These results suggest that the effects of the activation of rubisco by BA seem to be related with rubisco activase.

The Effects of Ozone on Photosynthesis, Antioxidative Enzyme Activity and Leaf Anatomical Response in the Indoor Plants and Japanese Red Pine (실내식물과 소나무의 오존에 대한 광합성 능력, 항산화 효소의 활성, 해부학적 반응)

  • Lee, Ju Young;Je, Sun Mi;Lee, Seoung Han;Woo, Su-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.601-607
    • /
    • 2013
  • The purpose of this study was to identify the effects of ozone pollution on the one woody species and two indoor plants in controlled environment. Pinus densiflora, Spathiphyllum patinii and Epipremnum aureum seedlings were exposed in both control and ozone chambers to investigate photosynthetic rate, water use efficiency, antioxidative enzyme activities such as GR(Glutathione reductase) and APX(Ascorbate peroxidase) activity and leaf anatomical response. Ozone was fumigated 8 hours for a day with 30 ppb concentration for 50 days. Pinus densiflora seedlings showed no significant difference on photosynthetic rate, water use efficiency, antioxidant enzyme activity during ozone exposure. Ozone concentration (30 ppb in this study) is not high enough to generate ozone damage on Pinus densiflora species. In contrast, ozone generally altered photosynthetic rate, antioxidant enzyme (especially GR) activity and leaf anatomy in two indoor species (Spathiphyllum patinii and Epipremnum aureum) exposed in ozone chamber were significantly differ from those of control in every measurement. These data suggest that two indoor species(Spathiphyllum patinii and Epipremnum aureum) are more sensitive to ozone than Pinus densiflora.

Effects of Different Light Intensities and Nutrition Conditions on Photosynthesis and Ribulose-Diphosphate Carboxylase Activity of Quercus acutissima Carr. Seedlings (광도(光度)와 양료(養料) 조건(條件)을 달리 했을 때 상수리나무묘목(苗木)의 광합성(光合成)과 Ribulose-Diphosphate Carboxylase의 활성(活性)에 미치는 영향(影響))

  • Woo, Su Young;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.1
    • /
    • pp.11-20
    • /
    • 1992
  • This study was conducted to compare chlorophyll contents, photosynthetic abilities, and ribulose-diphosphate (RuDP) carboxylase activities of Quercus acutissima seedlings grown with and without cotyledons under different light intensities and different nutrient levels. The results obtained in this study were as follows : 1. Chlorophyll contents were not significantly different among the light intensities except for 25% of full sunlight at the last harvest time. 2. RuDP carboxylase activity increased with increasing light intensity. 3. Photosynthetic abilities of seedlings grown under full and 75% of sunlight were significantly higher than that under 25% of full sunlight. 4. RuDP carboxylase activity was more related with chlorophyll a contents(r=0.792) than chlorophyll b contents(r=0.314). 5. RuDP carboxylase activities of the seedlings received at 1 or 2% addition rates of nutrients under 75% of full sunlight were higher than that at 0.5% addition rates.

  • PDF

Photosynthetic Characteristics of Porphyra yezoensis Ueda Measured in situ by Diving Pulse-Amplitude Modulated (PAM) Fluorometry on the Southwestern Coast of the Korean Peninsula (남서해역에서 양식되는 방사무늬김(Porphyra yezoensis Ueda)의 Diving-PAM에 의한 광합성 특성)

  • Kim, Jeong Bae;Lee, Won-Chan;Kim, Hyung Chul;Choi, Hee-Gu;Park, Jung-Im;Cho, Yoonsik;Park, Hwan Hee
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.3
    • /
    • pp.210-218
    • /
    • 2012
  • The morphological characteristics, carbon and nitrogen concentrations, stable isotope values and photosynthetic rates of Porphyra yezoensis were studied at the main purple lavers production areas on southwestern coast of Korea. The morphological characteristics of leaf length, leaf width and weight of Porphyra blades were between 11.6~16.3 (average 13.8) cm, 4.6~6.3 (average 5.4) cm, $1.1{\sim}2.6(average\;1.86)g\;DW\;m^{-2}$, respectively. Photosynthetic pigment of Chl a concentration of Porphyra blades was between $2.18{\sim}17.77(average\;9.65)mg\;DW\;Chl\;a\;m^{-2}$. Carbon and nitrogen concentrations of Porphyra blades was between $201{\sim}317(average\;240)mg\;DW\;g^{-1}$, $39.8{\sim}50.0(average\;43.5)mg\;DW\;g^{-1}$ and C/N ratio 5.0~6.7 (average 5.5). The range of average ${\delta}^{13}C$ and ${\delta}^{15}N$ values of Porphyra blades was between - 25.6 to - 24.0 (average - 24.7)‰ for ${\delta}^{13}C$, and 1.3 to 4.1 (average 2.1)‰ for ${\delta}^{15}N$. Photosynthetic characteristics of seaweeds measured by pulse amplitude modulation (PAM) fluorometry was used as an indicator of photosynthetic activity. We use Diving-PAM fluorometry to examine photosynthetic rates of the seaweeds Porphyra yezoensis at each station. Maximum quantum yield of Porphyra blades was between 0.46~0.55 (average 0.52), the variance of the effective PS II maximum quantum yield of the station was broadly similar. Maximum relative electron transport rate (rETRmax) of Porphyra blades was between $4.71{\sim}5.84(average\;5.33){\mu}mol\;electrons\;m^{-2}\;s^{-1}$, the changes of maximum relative electron transport rate (rETRmax) of Porphyra yezoensis were similar to those of PS II maximum quantum yield. Photosynthetic efficiency (${\alpha}$) was between 0.027~0.045 (average 0.036). Minimum saturating irradiance ($E_k$) range was $139{\sim}180(average\;156){\mu}mol\;photons\;m^{-2}\;s^{-1}$. Minimum saturating irradiance ($E_k$) made a difference by station within the area on southwestern coast. Carbon and nitrogen concentrations and photosynthetic rates of Porphyra blades production areas on southwestern coast were broadly similar. The photosynthetic characteristics showed low photosynthetic rates because the low maximum quantum yields and low maximum relative electron transport rate.

Enhancement of Photosynthetic Characteristics and Antioxidant Enzyme Activities on Chili Pepper Plants by Salicylic Acid Foliar Application under High Temperature and Drought Stress Conditions (고온 및 건조 스트레스 조건 하에서 살리실산 경엽처리에 의한 고추의 광합성 특성 및 항산화효소 활성 증대)

  • Lee, Jinhyoung;Lee, Heeju;Wi, Seunghwan;Lee, Hyejin;Choi, Haksoon;Nam, Chunwoo;Jang, Seonghoe
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.311-318
    • /
    • 2022
  • Salicylic acid (SA), a phenolic compound, plays a pivotal role in regulating a wide range of physiological and metabolic processes in plants such as antioxidant cellular defense, photosynthesis, and biotic and abiotic stress responses during the growth and development. We examined the effect of exogenous SA application (100 mg·L-1) on the growth, yield, photosynthetic characteristics, lipid peroxidation, and antioxidant enzyme activity of chili pepper plants under high temperature and drought stress conditions. SA treatment induced increases of net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) under the stress condition with the highest level after the third treatment. The contents of malondialdehyde and H2O2 were significantly lower in the third treatment of SA compared to the control. The activity of ascorbate peroxidase, catalase, peroxidase and superoxide dismutase, increased in treated plants by up to 247, 318, 55 and 54%, respectively compared to the nontreated control. There was no significant difference in the growth characteristics between SA-treated and nontreated plants, while the SA treatment increased marketable yield (kg/10a) by about 15% compared to the nontreated control. Taken together, these results suggest that foliar application of SA alleviates physiological damages caused by the combination of drought and heat stress, and enhances the photosynthetic capacity and antioxidant enzyme activities, thereby improving tolerance to a combination of water deficit and heat stress in chili pepper plants.

The Mechanism of Stomatal Closing by $H_2O_2$ in Epidermal Strips of Commelina communis L. (닭의장풀의 분리표피에서 $H_2O_2$에 의한 기공 닫힘기작)

  • 이준상;전방욱
    • Journal of Environmental Science International
    • /
    • v.6 no.2
    • /
    • pp.125-131
    • /
    • 1997
  • The mechanism of stomatal closing in response to $O_2$ was indirectly investigated by using $H_2O_2$ which is the intermediate product of $O_2$ metabolites. Stomata in epidermal strips close in response to $H_2O_2$. The effect of $H_2O_2$ on stomatal closing was dependent on the concentration of $H_2O_2$. 10 ppm $H_2O_2$ showed a clear effect on stomatal closing and 1000 ppm $H_2O_2$ induced complete stomatal closing after the treatment of 3 hours. Stomatal closing by $H_2O_2$ in intact leaf was also observed by measuring the diffusion resistance with porometer. It was found that the stomatal closing by $H_2O_2$ was not mediated by $Ca^{2+}$, and that was a different result observed in stomatal closing by water stress. Reversely, $Ca^{2+}$ showed a great inhibition on stomatal closing. The leakage of K+ in epidermal strips was doubled in response to $H_2O_2$ when it was campared to the control. 10 ppm $H_2O_2$ decreased photosynthetic activity. Fv/Fm representing the activity of Photosystem II was reduced about 4 % in 10 ppm $H_2O_2$ and 8 % in 100 ppm $H_2O_2$ In the treatment of 1.5 hour. However, stomatal closing by 10 ppm $H_2O_2$ was reduced about 56 %. According1y, it can be suggested that stomatal closing by $H_2O_2$ is related with the decrease of photosynthetic activity, but it was chiefly induced by the change of the membrane permeability. Key words Commelina communis, stomatal closing, $H_2O_2$, $Ca^{2+}$, photosynthesis.

  • PDF