• Title/Summary/Keyword: photosynthesis model

Search Result 92, Processing Time 0.025 seconds

Development of a Light Extinction Coefficient Change Model according to the Growth Stage of Cucumber in a Greenhouse (온실 내 백다다기 오이의 생육단계에 따른 흡광계수 변화 모델 개발)

  • Ki Beom Jeon;Jong Hwa Shin
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Understanding the light environment in greenhouse cultivation and the light utilization characteristics of crops is important in the study of photosynthesis and transpiration. Also, as the plant grows, the form of light utilization changes. Therefore, this study aims to develop a light extinction coefficient model reflecting the plant growth. To measure the extinction coefficient, five pyranometers were installed vertically according to the height of the plant, and the light intensity by height was collected every second during the entire growing season. According to each growth stage in the early, middle, and late stages, the difference between the top and bottom light intensity tended to increase to 69%, 72%, and 81%. When leaf area index and plant height increased, the extinction coefficient decreased, and it showed an exponential decay relationship. Three-dimensional model reflecting the two growth indexes, the paraboloid had the lowest RMSE of 1.340 and the highest regression constant of 0.968. Through this study, it was possible to predict the more precise light extinction coefficient during the growing period of plants. Furthermore, it is judged that this can be utilized for predicting and analyzing photosynthesis and transpiration according to the plant height.

Coordination Chemistry of Chlorophylls: Which Side of the Chlorin Macrocycle is Favored for the Ligand Coordination\ulcorner

  • Oba, Toru;Tamiaki, Hitoshi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.362-363
    • /
    • 2002
  • Since chlorophyll a and bacteriochlorophyll a are asymmetric molecules, an external ligand can coordinate to the central Mg atom either from the chiorin macrocycle side where the C13$^2$-methoxycarbonyl moiety protrudes (denoting as the 'back' side) or frome the other side (the 'face' side). We investigated which side of the macrocycle is favored for the ligand coordination, by survey of the highly resolved crystal structures of various photosynthetic proteins and theoretical model calculations. It is found that chlorophyll a as well as bacteriochlorophyll a and b in the photosynthetic proteins mostly bind their ligands on the 'back' sides. This finding was confirmed by the theoretical calculations for methyl chlorophyllide a and methyl bacteriochlorophyllide a as models: the 'back' type ligand-(bacterio )chlorophyll complex was more stable than the 'face' type one. The calculations predicted influence of the Cl3$^2$-stereochemistry on the choice of the side of the ligand coordination, which is discussed in relation to the presence of the Cl3$^2$-epimer of chlorophyll a in photosystem I reaction center [I].

  • PDF

Self-assembly of Amphiphilic Zinc Chlorins in an Aqueous Medium as a Model for Chlorosome of Green Photosynthetic Bacteria

  • Miyatake, Tomohiro;Kato, Syuusaku;Tamiaki, Hitoshi;Fujiwara, Manabu;Matsushita, Takayuki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.347-349
    • /
    • 2002
  • Synthetic zinc chlorins possessing a hydrophylic polyoxyethylene chain at the 17 -position were prepared. An amphiphilic zinc chlorin possessing a single chIorin moiety showed absorption maxima at 675 nm in an aqueous medium, indicating that the zinc chIorin did not form large aggregates but a dimeric structure. In contrast, amphiphilic zinc chlorin dyads in which two zinc chlorin moieties were connected with a hydrophilic polyoxyethylene linkage showed red-shifted absorption band around 720-740 nm in an aqueous medium. The result indicated that the amphiphilic zinc chlorin dyad self-aggregated to form chlorosome-like oligomer.

  • PDF

Transgenic plants with cyanobacterial genes

  • Park, Youn-Il;Choi, Sang-Bong;Liu, Jang R.
    • Plant Biotechnology Reports
    • /
    • v.3 no.4
    • /
    • pp.267-275
    • /
    • 2009
  • Over the years, cyanobacteria have been regarded as ideal model systems for studying fundamental biochemical processes like oxygenic photosynthesis and carbon and nitrogen assimilation. Additionally, they have been used as human foods, sources for vitamins, proteins, fine chemicals, and bioactive compounds. Aiming to increase plant productivity as well as nutritional values, cyanobacterial genes involved in carbon metabolism, fatty acid biosynthesis, and pigment biosynthesis have been intensively exploited as alternatives to homologous gene sources. In this short review, transgenic plants with cyanobacterial genes generated over the last two decades are examined, and the future prospects for transgenic crops using cyanobacterial genes obtained from functional genomics studies of numerous cyanobacterial genomes information are discussed.

Optimal condition for efficient DNA transfer in filamentous cyanobacteria by electroporation

  • Poo, Ha-Ryoung
    • Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.181-187
    • /
    • 1997
  • Filamentous cyanobacteria are an ecologically important group of bacteria because they are able to provide both organic carbon fixed nitrogen that can support the nutritional requirements for other microorganisms. Because of their prokaryotic nature, they can also be used as potentially powerful model systems for the analysis of oxygenic photosynthesis and nitrogen fixation. Gene transfer is an indispensable procedure for genetic analysis of filamentous cyanobacteria. Electroporation was used to introduce foreign DNA into cyanobacterial cells. In experiments designed to optimize the electroporation technique, the effects of the field strength (amplitude of pulse) and time constant (duration of pulse), DNA concentration and host restriction/modification of DNA on the efficiency of electro-transformation were investigated. The results of this research revelaed that a high voltage pulse of short duration was effective for the electro-transformation of Anabaene sp. M131. The maximal number of transformants was obtained at 6 kV/cm with a pulse duration of 5 msec. The efficiency of electro-transformation was also sensitive to concenetration of DNA; even small amounts of DNA (0.01 .mu.g/ml) were able to gie a large number of transformants (1.0 * 10$\^$3/ cfu/ml).

  • PDF

Model Studies in Photosynthesis (I). Synthesis and Characterization of Some Novel Pyropheophorbide Derivatives

  • Lee, Eun;Chang, Won-Ghil;Park, Sang-Chul;Park, Sang-Kyu;Kim, Hong-Doo;Lee, Jo-Woong
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.4
    • /
    • pp.152-157
    • /
    • 1981
  • 2'-(9"-Anthracenecarbonyloxy)ethyl pyropheophorbide a, methyl 3a-(9'-anthracenecarbonyloxy)pyropheophorbide a, 2'-(4"-phenylbenzoyloxy)ethyl pyropheophorbide a, and methyl 3a-(4'-phenylbenzoyloxy)pyropheophorbide a were prepared from chlorophyll a and b. Nuclear magnetic resonance study showed that the sandwich conformation is more favorable in 2'-(9"-anthracenecarbonyloxy)ethyl pyropheophorbide a than it is in other compounds.

녹색형광단백질로 구성된 분자광다이오드의 전자전달 특성

  • Nam, Yun-Seok;Choe, Jeong-U;Lee, Won-Hong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.149-152
    • /
    • 2000
  • In recent years, various artificial molecular photodiode have been fabricated by mimicking the electron transport function of biological photosynthesis. And now, we have been investigated the protein-organic hetero thin film photodiode using GFP as an sensitizer based on the redox potential difference of functional molecules. In this paper, shows molecular photodiode consisting of green fluorescence protein(GFP). viologen and TCNQ. The TCNQ and viologen were deposited onto ITO coated glass by LB technique. And GFP molecule was adsorption onto the viologen LB film surface by self-assembly method. Finally, The Al deposition onto GFP/viologen/TCNQ film surface was performed to make a top electrode. As a result, The MIM(metal/Insulator/Metal) structured device was constructed. The input light of 460nm wavelength was generated by the xenon lamp system, and then the photocurrent produced from the molecular device was detected through a current-voltage(I-V) measuring unit (SMU Model 236, Keithley, USA). An artificial molecular photodiode using protein(GFP)-adsorbed hetero-LB film is presented as a model system for the bioelectronic device based on the biomimesis.

  • PDF

Mathematical Models of Respiration Rate of Cucumber Plants under Varying Environmental Conditions (환경 변화에 따른 오이의 호흡속도에 관한 수리적 모형)

  • 임준택;정현희;백선영;현규환;권병선;김학진;정순주;이범선
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.185-192
    • /
    • 2000
  • This study was conducted to develop mathematical model of respiration rate of cucumber plant under varying environmental conditions. 8.55% of gross photosynthesis of individual cucumber plant was used as respiration. Growth respiration coefficient was estimated as 0.0935. Maintenance respiration rate was estimated as 0.00158g CH$_2$g$^{-1}$ .h$^{-1}$ at 24$^{\circ}C$ of air temperature and it increased exponentially as air temperature became higher. Respiration rate decreased poportionally as content of storage carbohydrate became lower. Ion uptake respiration rate of roots was estimated as 0.6648g C$H_2O$.(gN)$^{-1}$ .

  • PDF

Measurement and estimation of transpiration from an evergreen broad-leaved forest in japan

  • Hirose, Shigeki;Humagai, Tomo′omi;Kumi, Atsushi;Takeuchi, Shin′ichi;Otsuki, Kyoichi;Ogawa, Shigeru
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05a
    • /
    • pp.52-59
    • /
    • 2001
  • Methods to measure and estimate transpiration of a forest composed of evergreen broad-leaved trees (Pasania edulis Makino) are studied. Heat pulse velocity has been measured along with soil moisture and micrometeorological factors at the Fukuoka Experimental Forest, the Research Institute of Kyushu University Forests in Fukuoka, Japan (33$^{\circ}$38'N, 130$^{\circ}$31'E, alt. 75m). Tree cutting measurement was conducted to convert the heat pulse velocity into sap flow and transpiration. A big leaf model to calculate transpiration and Interception loss is examined and the estimated values are compared with the measured values obtained from the heat pulse measurement. The results show that 1) Pasania edulis Makino posessing radial pore structure had relatively high water content and high heat pulse velocity even within the central part of the stem near the pith, 2) the heat pulse velocity was well correspond to the water uptake in the tree cutting measurement, 3) the estimation of sap flow based on the heat pulse velocity is accurate, and 4) the big leaf model using the parameters obtained from measurement of a portable photosynthesis system in one day in summer gives reasonable estimation of transpiration independent of seasons and weather.

  • PDF