• Title/Summary/Keyword: photometric method

Search Result 149, Processing Time 0.03 seconds

A Study on Coagulation Process using Zirconium Silicate as a Coagulation-aid (지르코늄 실리케이트를 응집보조제로 이용한 응집공정에 관한 연구)

  • Cho, Jae-Seung;Yoon, Tai-Il;Jeon, Yu-Jae;Cho, Kyung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.3
    • /
    • pp.203-207
    • /
    • 2009
  • The concern of seriousness and harmful effects of environmental pollution is rising by the various water pollutions, appearances of new micro-noxious substances and increase of sustainable pollutants. The method is suggested that can effectively increase the removal of organic substances and several pollutants using a coagulation process. The experiment for characteristics of $ZrSiO_4$ (zirconium silicate) as a coagulation-aid was carried out for application to coagulation process with domestic wastewater and lake water, and the removal rate of the organic substances depending on a dosage was evaluated by PDA (Photometric Dispersion Analyzer) in this study. Zeta-potential of zirconium silicate solution was -32.22 mv at pH 7 and the lower negative(-) charge was detected in the more acidic conditions. Absorbance on $UV_{254}$ presented higher when zirconium silicate was added than in a domestic wastewater itself. Besides, the results by PDA experiment represented that injection of zirconium silicate could promote growing of floc. Tests for coagulation process were conducted by three ways which are pre-injection, co-injection and post-injection of zirconium silicate with alum. Accordingly, removal efficiency of organic substances increased over 15% in co-injection than in using of alum as a sole reagent. When a 20 mg/L of alum was used with a 10 mg/L of zirconium silicate, the removal efficiency was high up to 90%. Removal efficiency of $COD_{Cr}$ was improved more than 15% in case of dosage of coagulant either PAC (Poly aluminium chloride) or PACS (Poly aluminium chloride Silicate) together with zirconium silicate. As a result, the removal efficiency of $COD_{Cr}$ were 5~10% higher in a co-injection of zirconium silicate with a coagulant than a pre-injection and a post-injection but it of soluble substances was lower in a co-injection.

UBVI CCD Photometry of the Globular Cluster M30 (구상성단 M30의 UBVI CCD 측광연구)

  • Lee, Ho;Jeon, Young-Beom
    • Journal of the Korean earth science society
    • /
    • v.27 no.5
    • /
    • pp.557-568
    • /
    • 2006
  • We present CCD UBVI photometry for more than 10,000 stars in $20'.5{\times}20'.5$ field of the halo globular cluster M30. From a color-magnitude diagram, main sequence turnoff was obtained when $V_{TO},\;(B-V)_{TO},\;and\;(V-I)_{TO}\;are\;8.63{\pm}0.05,\;0.44{\pm}0.05\;and\;0.63{\pm}0.05$, respectively. From a (U-B)-(B-V) diagram, reddening parameter, E(B-V) equals $0.05{\pm}0.01$ and a UV color excess ${\delta}(U-B)\;is\;0.27{\pm}0.01$. The abundance is derived, where [Fe/H] equals $-2.05{\pm}0.09$ according to the photometric method and spectroscopic data. The observed luminosity function of M30 shows an excess in the number of red giants relative to the number of turnoff stars, when comparing with the predictions of canonical models. Using the Hipparcos parallaxes for subdwarfs, we estimate distance modulus, $(m-M)_o\;as\;14.75{\pm}0.12$. Using the R and R' method, we find helium abundances, Y(R) as $0.23{\pm}0.02$, Y(R') as $0.29{\pm}0.02$, respectively. Finally, the cluster' sage dispersion was deduced from 10.71 Gyr to 17 Gyr.

OPTICAL MULTI-CHANNEL INTENSITY INTERFEROMETRY - OR: HOW TO RESOLVE O-STARS IN THE MAGELLANIC CLOUDS

  • Trippe, Sascha;Kim, Jae-Young;Lee, Bangwon;Choi, Changsu;Oh, Junghwan;Lee, Taeseok;Yoon, Sung-Chul;Im, Myungshin;Park, Yong-Sun
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.235-253
    • /
    • 2014
  • Intensity interferometry, based on the Hanbury Brown-Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25 000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as $m_R{\approx}14$, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass-radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade-Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.

PHOTOELECTRIC OBSERVATIONS AND UBVRI LIGHT CURVES ANALYSIS OF ALGOL (Algol의 광전측광관측과 UBVRI 광도곡선의 분석)

  • 정장해;이용삼;임조령;양감징
    • Journal of Astronomy and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.123-145
    • /
    • 1993
  • UBVRi photometry of Algol was carried out from December of 1988 to March of 1991 at Chungbuk National University Observatory and a total of 3465 observations in U, B, V, R, I were obtained. Three times of primary minimum light of JDH el 2447898.0938, JEH el 2448265.1205 and JDH el 2448288.0598, and two secondary minimum light of JDH el 2447808.1014 and JDH el 2448275.146 were determined from our observations. We analyzed simultaneously the UBVRI light curves of the Algol system with the Wilson-Devinney method for the determination of the photometric parameters. Indivisual masses for the 3 components of Algol are derived as $m_1$=3.36, $m_2$=0.76, $m_3$=1.6 in solar mass and radii as $R_1$=2.97, $R_2$=0.76 in solar radinus using i=$82.{\circ}47$, q=0.227, $r_1$=0.2102, $r_2$=0.2512 of our solution and some parameters of the spectroscopic solution of Hill et al. (1971). Our results is simiar to those reported by Kim (1989). The temperature of Algol C, $T_3$=8800 was obtained by means of fitting $l_1$, $l_2$, and $l_3$ of five colors to Planckian curve, and $R_3$=$1.6R_\odot$ is derived from its result. It is believed that its semidetached configuration of Algol A and B is the consequence of case B mass transfer. According to its location in a mass-radius diagram. Algol b may have evolved significantly in its Hburnning phase.

  • PDF

Flavor Components in the Bellflower Roots (Platycodon glaucum Nakai) (도라지 뿌리의 향기성분에 관하여)

  • Chung, Tae-Yung;Kim, Jeong-Lim;Hayase, Fumitaka;Kato, Hiromichi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.16 no.2
    • /
    • pp.136-146
    • /
    • 1987
  • Flavor components were trapped by stimultaneous steam distillation-extraction method for investigating it in the bellflower roots and fractionated into four groups such as a neutral, a basic, a phenolic and an acidic fraction. An acidic fraction methylated with diazomethane solution and three others were analysed by GC and GC-MS equipping a fused silica capillary column, and S-containing compounds in these were detected with a flame photometric detector (FPD). The total of one hundred and three compounds from the bellflower roots were identified: they were 6 aliphatic hydrocarbons, 10 aromatic hydrocarbons, 2 terpene hydrocarbons, 12 alcohols, 8 terpene alcohols, 17 aldehydes, 3 terpene aldehydes, 5 ketones, 5 esters, 3 furans, 2 thiazoles, 2 lactones, 2 sulfides, 9 phenols, l2 carboxylic acids and 5 others. The greater part of the others except carboxylic acids were identified from a neutral fraction of which was assumed to be indispensable for the reproduction of bellflower root odor in a sensory evaluation. As a result of a sensory evaluation, 1-hexanal, trans-2-hexenal, 1-hexanol, cis-3-hexenol, trans-2-hexenol, 1-octen-3-ol and so forth identified in a neutral fraction were considered to be the key compounds of grass-like odor in the bellflower roots.

  • PDF

A SPECTROSCOPIC STUDY OF THE CLOSE BINARY AG VIRGINIS (근접쌍성 AG Virginis의 분광학적 연구)

  • Kim, Ho-Il;Lee, Chung-Uk;Lee, Jae-Woo;Sohn, Mi-Rim
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.353-362
    • /
    • 2005
  • We performed a new high-resolution spectroscopy of AG Vir for 4 nights from 25 March 2004 using the BOES (Bohyunsan Optical Echelle Spectrograph) attached to the 1.8-m reflector at Bohyunsan Optical Astronomy Observatory, and obtained a total of 59 spectra where all orbital phases are covered. To get the radial velocities of the binary system, both method of the CCF (Cross-Co..elation Function)and the BF (Broadening Function) were applied to the analysis of all the observed spectra. From these, the CCF could calculate the radial velocities of the primary star alone, while the BF could determine those of the primary and the secondary components. New absolute dimensions were deduced with the combination of our spectroscopic orbital elements ($K_1=90.5km/s$$K_2=258.8$) and the photometric solutions of Bell, Rainger, & Hilditch (1990): $A_1,=1.99M_\bigodot,\;M_2=0.62M_\bigodot,\;R_1=2.21R_\bigodot,\;R_2=1.36R_\bigodot,\;L_1=13.17L_\bigodot,\;and\;L_2=3.47L_\bigodot$. Our absolute parameters are larger and brighter than those derived from Bell, Rainger, & Hilditch (1990). We re-analyzed all the previous radial-velocity curves of AG Vir and, as a result, can see that its system velocity scatters largely up to ${\pm}8km/s$. However, we, at present, cannot determine this as the light-time effect due to the third body, which was suggested as a cause of the orbital period changes by Qian (2001).

Analysis of THMs and PCBs by Indirect Photometric Method in High Performance Liquid Chromatography (고성능 액체 크로마토그래피의 간접 분광광도법에 의한 THM과 PCB의 분석)

  • Chung, Yongsoon;Lee, Kangwoo
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.12
    • /
    • pp.918-924
    • /
    • 1995
  • THMs and PCBs were separated and analysed with elution on Novapak ODS or $\mu-Bondapak$ phenyl column by an eluent containing p-nitrophenol (p-NP). THMs studied were CHCl3, CHBrCl2, CHBr2Cl, and CHBr3, and PCBs used were Aroclor 1221, 1242, 1248, $\alpha-$ and $\beta-BHC.$ It was thought that the retention on the stationary phase and sensitivities of the samples are related to the interaction between the sample and stationary phase or p-NP. THMs were separated completely on the ODS column by elution with MeOH-water (30 : 70) containing $1.0{\times}10^{-4}$ M p-NP and some of PCBs were separated on the phenyl column by elution with $CH_3CN$-water(50 : 50) containing $1.0{\times}10^{-4}$ M p-NP. Detection limits of THMs were from $1.0{\times}10^{-4}$ g to $1.0{\times}10^{-6}$ g. Aroclors were $2{\times}10^{-6}$ g, and $\alpha-$ and $\beta-BHC$ were $2{\times}10^{-4}$ g and $1.0{\times}10^{-4}$ g respectively.

  • PDF

Determination of Phorate (0,0-diethyl S-ethylthiomethyl phosphorithioate) and its Metabolites in Soil and Vegetables by GLC (토양(土壤)과 채소중(菜蔬中) Phorate(0,0-diethyl S-ethylthiomethyl phosphorithioate)와 그 대사산물(代謝産物)들의 GLC분석(分析))

  • Hong, Jong-Uck;Lee, Hae-Keun
    • Applied Biological Chemistry
    • /
    • v.26 no.2
    • /
    • pp.104-109
    • /
    • 1983
  • Gas chromatographic method for the analysis of phorate(0,0-diethyl S-ethyl-thiomethyl phosphorithioate) and its metabolites in soil and vegetables was studied by using a mixed phase column(10% DC-200+8% Reoplex-400+2% QF-1 on Gas Chrom Q, $1.8{\times}2mm$ i.d, borosilicate glass column). This column can separate completely phorate and its four metabolites except phoratoxon sulfoxide. Retention time of standard mixture ranged 1.8 to 16.1 minutes at column temperature programming from 130 to $200^{\circ}C$ at $5^{\circ}C/min$ and detector sensitivity was also very high(0.05 to 1.05ng). Recoveries from soil and vegetables untreated but fortified with phorate and its three major metabolites at 0.05 and 0.5ppm levels were above 90% for phorate, phorate sulfoxide and phorate sulfone while recovery of phoratoxon metabolite was about 84%.

  • PDF

Evaluation of Odors and Odorous Compounds from Liquid Animal Manure Treated with Different Methods and Their Application to Soils (액상 가축분뇨의 처리 및 토양환원에 따른 악취 및 악취물질의 평가)

  • 고한종;최홍림;김기연;이용기;김치년
    • Journal of Animal Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.453-466
    • /
    • 2006
  • To comply with stricter regulations provoked by increasing odor nuisance, it is imperative to practice effective odor control for sustainable livestock production. This study was conducted to assess odor and odorous compounds emitted from liquid animal manure with different treatment methods such as Fresh Manure(without treatment, FM), Anaerobic Digestion(AD) and Thermophilic Aerobic Digestion(TAD) and their application to soil. Air samples were collected at the headspace of liquid manure, upland and paddy soil, and analyzed for odor intensity and offensiveness using an olfactometry; odor concentration index using odor analyser; nitrogen-containing compound such as ammonia(NH3) using fluorescence method; and sulfur containing compounds such as hydrogen sulfide(H2S), methyl mercaptan(MeSH), dimethyl sulfide(DMS) and dimethyl disulfide(DMDS) using gas chromatography-pulsed flame photometric detector, respectively. Odor intensity, offensiveness and concentration index from TAD liquid manure was statistically lower than those from FM and AD(p<0.01). Mean concentrations of H2S, MeSH, DMS, DMDS and NH3 were 65.93ppb, 18.55ppb, 5.26ppb, 0.33ppb and 10.57ppm for liquid manure with AD; and 5.15ppb, 0.97ppb, 0.80ppb, 0.56ppb and 1.34ppm for liquid manure with TAD, respectively. More than 60% of malodorous compounds related to nitrogen and sulfur were removed by heterotrophic microorganisms during TAD treatment. When liquid manure was applied onto upland and paddy soil, NH3 removal efficiencies ranged from 51 to 94% and 22 to 91% for AD and TAD liquid manure, respectively. The above results show that liquid manure with TAD is superior to AD and FM with respect to the odor reduction and odor problem caused by land applied liquid manure is directly related to the degree of odor generated by the manure treatment method.