• Title/Summary/Keyword: photolysis

Search Result 237, Processing Time 0.025 seconds

Photodegradation of Mixtures of Tetracycline, Sulfathiazole, and Triton X-100 in Water (수계 내 테트라사이클린, 설파다이아졸, 트리톤 X-100 혼합물의 광분해)

  • Yun, Seong Ho;Lee, Sungjong;Jho, Eun Hea;Moon, Joon-Kwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.13-19
    • /
    • 2021
  • BACKGROUND: Chemicals such as antibiotics and surfactants can enter agricultural environment and they can be degraded by natural processes such as photolysis. These chemicals exist in mixtures in the environment, but studies on degradation of the mixtures are limited. This study compares the photodegradation of Triton X-100 (TX) and antibiotics [tetracycline (TC) and sulfathiazole (STH)] when they are in a single solution or in mixtures. METHODS AND RESULTS: TC, STH, and TX solutions were exposed to UV-A for the photodegradation tests for 14 days. The residual TC, STH, and TX concentrations were analyzed by using HPLC. The TC degradation was similar regardless of the presence of TX, while the TX degradation was lower in the presence of TC. The STH degradation was similar regardless of the presence of TX, while the TX degradation was greater in the presence of STH. However, the STH degradation was slower in the TC-STH-TX mixture than in the STH-TX mixture. Also, the TX degradation was negligible in the TC-STH-TX mixture. The results show that the photodegradation of TC, STH, and TX can be different in mixtures. This can be attributed to the different emission and absorption wavelengths of each compound and interaction between these compounds and photoproducts. CONCLUSION: Overall, this study emphasizes that photodegradation of single chemicals and chemical mixtures can be different, and more studies on single compounds as well as mixtures are required to understand the fate of chemicals in the environment in order to manage them properly.

Plasma bioscience for medicine, agriculture and hygiene applications

  • Eun Ha Choi;Nagendra Kumar Kaushik;Young June Hong;Jun Sup Lim;Jin Sung Choi;Ihn Han
    • Journal of the Korean Physical Society
    • /
    • v.80
    • /
    • pp.817-851
    • /
    • 2022
  • Nonthermal biocompatible plasma (NBP) sources operating in atmospheric pressure environments and their characteristics can be used for plasma bioscience, medicine, and hygiene applications, especially for COVID-19 and citizen. This review surveyed the various NBP sources, including a plasma jet, micro-DBD (dielectric barrier discharge) and nanosecond discharged plasma. The electron temperatures and the plasma densities, which are produced using dielectric barrier discharged electrode systems, can be characterized as 0.7 ~ 1.8 eV and (3-5) × 1014-15 cm-3, respectively. Herein, we introduce a general schematic view of the plasma ultraviolet photolysis of water molecules for reactive oxygen and nitrogen species (RONS) generation inside biological cells or living tissues, which would be synergistically important with RONS diffusive propagation into cells or tissues. Of the RONS, the hydroxyl radical [OH] and hydrogen peroxide H2O2 species would mainly result in apoptotic cell death with other RONS in plasma bioscience and medicines. The diseased biological protein, cancer, and mutated cells could be treated by using a NBP or plasma activated water (PAW) resulting in their apoptosis for a new paradigm of plasma medicine.

Artificial Radical Generating and Scavenging Systems: Synthesis and Utilization of Photo-Fenton Regent in Biological Systems

  • Matsugo, Seiichi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.138-141
    • /
    • 2002
  • A photo-labile compound which is bioinactive but, upon irradiation with light, yields bioactive species is called as "caged compound". Photolysis of caged compounds generating bioactive species, has become a general method to produce a desired amounts of bioactive species in the specific time interval at the desired place or area of the target biological systems. For this purpose, we designed and synthesized caged hydroxyl radical., "Photo-Fenton Reagent" NP-IIl. NP-IIl has a strong absorption maximum at 377 nm and yields hydroxyl radicals upon UV light irradiation. The antioxidant activity of the ${\alpha}$ -lipoic acid and other naturally occurring compounds has been examined by using NP-IIl as a molecular probe. For example, upon photoirradiation of NP-lII with BSA or apolipoprotein of human low density (LDL), the significant oxidative modifications were observed in both cases. The oxidation was completely suppressed in the presence of ${\alpha}$-lipoic acid, which clearly demonstrates the strong hydroxyl radical scavenging activity of ${\alpha}$-lipoic acid. Other applications of NP-lII will also be described

  • PDF

Hydroxyl Radical Species Generated by Non-thermal Direct Plasma Jet and Their Qualitative Evaluation

  • Ghimire, B.;Hong, S.I.;Hong, Y.J.;Choi, E.H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.198.2-198.2
    • /
    • 2016
  • Reactive oxygen and nitrogen species (RONS) can be generated by using non-thermal atmospheric pressure plasma jet which have profound biomedical applications [1, 2]. In this work, reactive oxygen species like hydroxyl radical (OH) are generated by using non-thermal direct plasma jet above water surface using Ar gas and their properties have been studied using ultraviolet absorption spectroscopy. OH radicals are found to be generated simultaneously with the discharge current with concentration of $2.7{\times}1015/cm3$ at 7mm above water surface while their persistence time have been measured to be $2.8{\mu}S$. In addition, it has been shown that plasma initiated ultraviolets play a major role to generate RONS inside water. Further works are going on to measure the temporal behavior of OH and $O2^*-$.

  • PDF

Nonthermal Atmospheric Pressure Plasmas and their Applications to Plasma Bioscience and Medicines

  • Choe, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.56.2-56.2
    • /
    • 2015
  • Nonthermal Atmospheric Pressure Plasmas and their Applications to Plasma Bioscience and Medicines have been introduced for next generation human healthcare's quantum developments. Various kinds of nonthermal atmospheric pressure plasmas have been introduced and their electron temperature and plasma densities along with reactive oxygen and nitrogen species have been diagnosed and analyzed for biological cell interactions, especially, used in Plasma Bioscience Research Center (PBRC), Korea. Herein, we have also introduced the plasma-initiated ultraviolet photolysis, which might be a generation mechanism for the reactive oxygen and nitrogen species (RONS) intracellular and extracellular regions inside the liquid when the plasma has been bombarded onto the water. Finally we have investigated the interactions of these RONS with the various cancer cells resulting in apoptotic cell death.

  • PDF

The Synthesis of Urocanic Alkyl Ester and Photolysis (우로칸 알킬에스테르의 합노(合盧) 및 광학효과(光學效果))

  • No, Sueng-Ho;Lee, Hyang-Woo;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.45-49
    • /
    • 1991
  • The synthesis of urocanic acid which was started D-fructose, and its alkyl esters, urocanic ethyl ester and urocanic isobutyl ester, were prepared by esterificated. Urocanic ethyl ester and urocanic isobutyl ester were insoluble in water and soluble most organic solvents (ethanol, benzene, toluene, pyridine, THF, DMF) which adds to their practical applicability, and absorb ultraviolet light of greater wavelength than the free acid and there by are more effective for shielding sensitive materials, including the humanbody, from the chemically most effective portion of the solar ultraviolet spectrum.

Energy Relaxation Dynamics of Excited Triplet States of Directly Linked Zn(II)Porphyrin Arrays

  • Song, Nam-Woong;Cho, Hyun-Sun;Yoon, Min-Chul;Aratani, Naoki;Osuka, Atsuhiro;Kim, Dong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.271-276
    • /
    • 2002
  • The energy relaxation dynamics of the lowest excited singlet and triplet states of the Zn(II)porphyrin monomer and its directly linked arrays were comparatively investigated with increasing the number of porphyrin moieties. While the fluorescence decay rates and quantum yields of the porphyrin arrays increased with the increase of porphyrin units, their triplet-triplet (T-T) absorption spectra and decay times remained almost the same. The difference in the trends of energy relaxation dynamics between the excited singlet and triplet states has been discussed in view of the electronic orbital configurations.

Synthesis and Photoaffinity Labeling of 3'(2')-O-(p-azidobenzoyl) ATP

  • Shin, Seung-Jin;Lee, Woo-Kyoung;Park, Jong-Sang
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.211-215
    • /
    • 1997
  • A photoactive analog of ATP, 3'(2')-O-(p-azidobenzoyl)-adenosine 5-triphosphate (AB-ATP) was synthesized by chemically coupling N-hydroxysuccinimidyl-4-azidobenzoate (NHS-AB) and ATP. The utility of AB-ATP as an effective active-site-directed photoprobe was demonstrated using catalytic subunit of protein kinase A as a model enzyme. Photoincorporation of AB-ATP was saturated with apparent dissociation constant of $30{\mu}m$ and protected completely by $100{\mu}m$ of ATP. When the enzyme was covalently modified by photolysis in the presence of saturating amounts of photoprobe, about 60% inhibition of enzyme activity was observed. These results demonstrate that AB-ATP has potential application as a probe to characterize ATP-binding proteins including protein kinases.

  • PDF

Photochemical synthesis of diphenylphenanthrenes, and the photophysical properties studied by emission and transient absorption measurements

  • Yamaji, Minoru;Hakoda, Yuuma;Horimoto, Ami;Okamoto, Hideki
    • Rapid Communication in Photoscience
    • /
    • v.3 no.4
    • /
    • pp.73-75
    • /
    • 2014
  • Novel diphenylphenanthrenes (DPPs) were prepared by a photocyclization method, and the substituent effects of the phenyl groups on the photophysical properties of the phenanthrene chromophore were investigated based on measurements of fluorescence yields, lifetimes, and transient absorption. Fluorescence activities in DPPs are increased by introducing phenyl rings that can enhance the transition moment along the short axis of the phenanthrene skeleton. Intersystem crossing from the fluorescent states to the triplet manifolds is shown to be operative through the triplet-triplet absorption spectra obtained by laser photolysis techniques.

A Study on Photolysis of Aromatic Diazonium Salt (방향족 디아조늄염의 광분해에 관한 연구)

  • 이형관
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.12 no.1
    • /
    • pp.93-105
    • /
    • 1994
  • A new ink transfer model based on the physical mechanism for the maximum ink transfer rate is proposed, and examined by the experimental data of P.J Mangin et, al. for the relations of the maximum ink transfer rates to the printing pressure, the speed and the roughness of paper substrates. The free ink split coefficient and immobilized ink under the maximum ink transfer rate are calculated by the new model and the experimental data. It is concluded that the new model is very useful, and the free ink split coefficient and the immobilized ink are inversely propotional and propotional to the paper roughness respectively and both are saturated eventually under the critical values.

  • PDF